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 Summary
There are substantial learning gaps across countries on standardised international 

assessments. In this paper, I use unique child-level panel data from Ethiopia, India, Peru and 
Vietnam with identical tests administered across these countries to children at 5, 8, 12 and 
15 years of age to ask at what ages do gaps between different populations emerge, how they 

increase or decline over time, and what the proximate determinants of this divergence are. 

I document that a clear pattern of stochastic dominance is evident at the age of 5 years, prior 

to school enrolment, with children in Vietnam at the upper end, children in Ethiopia at the 
lower, and with Peru and India in between. Differences between country samples grow in 

magnitude at later ages, preserving the country rankings noted at 5 years of age over the 
entire age range studied. This divergence is only partly explained by home investments and 
child-specific endowments in a value-added production function approach. The divergence in 

achievement between Vietnam and the other countries at primary school age is largely 
explained by the differential productivity of a year of schooling. These findings are confirmed 
also using an instrumental variables approach, using discontinuities in grade completion 

arising between children born in adjacent months due to country-specific enrolment 
guidelines. 
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1. Introduction 
The performance of countries on comparable learning assessments differs dramatically, 

including among developing countries.1 Recent research suggests that this differential 
performance in test scores directly translates into differences in growth rates and wage 

inequality (see Hanushek and Kimko 2000, Hanushek and Woessmann 2008, 2012a, 2012b 
and Kaarsen 2014).  

Results from comparative international tests, based on cross-sectional data on children in 

middle or secondary school, raise two important questions. First, at what age do gaps 

between countries emerge and how do they then evolve over the children's educational 
trajectories? Second, what are the sources of these gaps – can they perhaps be explained 
by systematic differences in home inputs, school quality or child-specific attributes such as 

ability or health across countries? These questions are central to identifying the domains in 
which interventions may be most required and at what ages. Such understanding is 
especially important in light of a now-large literature that documents that the effectiveness of 

interventions varies over the age of children (see Heckman and Mosso 2014 forthcoming for 
a recent review).  

I address these questions using a unique child-level panel dataset from four developing 

countries – Ethiopia, India, Peru and Vietnam – collected by the Young Lives study on two 

cohorts of children between 2002 and 2009. The data are particularly suitable for this 
analysis: In each round, the same tests were administered to children in a particular age 
group across countries; the panel structure of the data allows me to analyse learning 

dynamics; and detailed household and background information allows for the estimation of 
rich production functions of achievement. Since the data were collected through home visits 
to a random sample of children in given birth cohorts, they do not suffer from selection issues 

arising from non-enrolment or non-attendance that are characteristic of school-based 
assessments in developing countries, especially in post-primary education. The data are also 
particularly well suited to this analysis since the four countries display remarkably different 

levels of achievement. 

Using these data, I generate comparable distributions of test scores for quantitative 

proficiency across countries for children at the ages of 5, 8, 12 and 15 years; I further link the 
test scores of 12-year old children to the international test distribution in mathematics from 
the Trends in International Mathematics and Sciences Study (TIMSS) 2003 round, which 

covered Grade 4 students in 29 countries. I compare the achievement distributions for 
different country samples in the Young Lives data at each age and assess if there is a clear 
ranking across the samples, the magnitude of the gaps between countries, and the stability 

of rankings across different ages.  

Further, I use the individual-level panel dimension of the data, combined with household-level 

information, to estimate value-added models of achievement production. Specifically, I focus 
on assessing whether test score divergence across countries is explained by differing child-

 
 
1  For example, math scores in the 2012 PISA assessment differed by 1.4 standard deviations (SD) between Vietnam and Peru, 

two of the countries covered in this paper. In comparison, the difference between the US and Finland, the highest scoring 
Scandinavian country, was 0.38 SD while the gender gap in math performance was about 0.12 SD in the UK and Germany 

(OECD, 2013). 
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level endowments and home investments, differing time use patterns, and differing exposure 
to and effectiveness of a grade of schooling in the four countries. For two countries, Peru and 
Vietnam, I am able to use discontinuities in the number of grades completed arising from 

enrolment thresholds for the identification of grade productivity effects and compare results to 
value-added estimates; I find no significant evidence of systematic bias in the production 
function estimates compared to instrumental variable (IV) estimates based on this 

discontinuity.  

This paper makes two key contributions. Foremost, it presents the first analysis of the 

emergence and evolution of gaps in cognitive achievement across countries, from the age of 
5 to 15 years, using internationally comparable child-level panel data. While similar exercises 

have previously been carried out within the context of individual developed countries while 
studying socioeconomic or racial gaps in test scores (see e.g. Fryer and Levitt 2004), I am 
not aware of any research that attempts to link analyses comparably across countries or 

covers an equivalently long age range, even within-country, using data from developing 
countries. Additionally, it provides the first comparable estimates of school quality across 
countries using individual-level panel data combined with quasi-experimental variation.2  

Results from the analysis are informative and often striking. First, learning levels in the 

sample are low relative to international norms: at the age of 12 years, I find that about half 
the children in Ethiopia, and about a quarter of children in Peru and India fail to reach the low 
achievement benchmark for fourth-grade children (aged about 10 years) in TIMSS.3 Second, 

there is a clear stochastic dominance of quantitative proficiency evident at the age of 5 years, 
before most children have started school, with children in Vietnam and Peru at the upper 
end, Ethiopia at the lower end, and India in between. This ranking is stable at all ages tested, 

i.e. at 5, 8, 12 and 15 years. Furthermore, there is clear evidence of the gaps increasing over 
the age range: conditional on test scores in 2006/7, in both cohorts the scores in 2009 are 
higher in Vietnam than in Peru, which are in turn higher than in India and Ethiopia. Third, this 

gap is only partially explained by a rich measure of inputs in a production function approach 
including household wealth, parental education and the child's nutrition, daily time use, sex 
and birth order. Fourth, the estimated productivity of schooling differs importantly across 

countries: at primary school level, a year of schooling in Vietnam is considerably more 
productive in terms of quantitative skill acquisition than a year of schooling in Peru or India. 
Preferred IV estimates indicate a gain of about 0.4 SD per grade completed in Vietnam in 

comparison to 0.2 SD in Peru. 

These results have wide-ranging relevance. The finding that the ranking of the four country 

samples in this paper is evident even at the age of 5 years, before children have begun 
schooling, supplements a much broader literature across disciplines in providing suggestive 
 
 
2  A small body of previous work has attempted to estimate the differential quality of schooling across countries. These papers 

have however relied on either the returns to schooling of immigrants from different countries to the US or on cross-sections of 

academic achievement from international testing programs (Hanushek and Kimko 2000, Hendricks 2002, Schoellman 2012) 
thus precluding them from studying learning dynamics while in school. Kaarsen (2014) is a recent exception who utilises 

information from cross-sections of students in Grade 4 and in Grade 8 in the TIMSS study to estimate the effectiveness of 

schooling in different countries thus measuring learning dynamics at the population level. 

 Analysis presented here provides fresh insights, because it allows for studying individual level learning dynamics with detailed 

child-level information, because it analyses gaps in cognitive achievement predating school enrolment, because it does not 
suffer from issues of selection resulting from increasing levels of drop-outs over the educational trajectory and because the 

Kaarsen (2014) study does not cover any of the four countries in this paper. 

3  As a comparison, only 7 percent in the UK and the US, and less than 3 percent in Singapore and Hong Kong, fail to reach this 
basic level in Grade 4 when they are aged 10 years on average. 
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support for an increased focus on preschool interventions and early childhood interventions 
(see e.g. Grantham-McGregor et.al. 2007). While a large body of evidence in this area is 
available from developed countries, with the exception of nutritional or health interventions, 

the literature on causal studies of preschool factors on cognitive achievement remains limited 
in other contexts.4  

However, equally importantly, I document that the gaps magnify over time with divergence in 

learning levels at primary school ages, especially between Vietnam and the other countries, 

largely being explained by the differential productivity of schooling. This indicates that there 
may be considerable room for corrective policy measures aimed at narrowing learning gaps 
in primary schools. Foremost, this highlights the need for a shift towards emphasizing 

learning outcomes in developing countries rather than merely enrolment or grades 
completed; learning levels in these countries are low and there are important differences in 
school productivity between different countries, which may offer margins for policy 

improvement.5 The results also emphasize that the ranking of countries by national income 
(GNI) per capita and by learning outcomes are not necessarily identical: whereas 
Vietnamese GNI per capita (PPP) is at a similar level as India, and only about a third of Peru, 

learning outcomes in Vietnam are consistently better than any of the other countries.  

Finally, the stark differences in the productivity-per-school-year across countries raise a very 

important question: `Why is learning productivity per year so much greater in some countries 
than others?' Most current work within the economics of education in developing countries 

focuses on the effect of particular interventions (e.g. provision of textbooks) within specific 
contexts; while this is most useful in allowing for robust identification of policy levers that are 
available to national governments, it is not adequate for assessing how learning gains in a 

`business-as-usual' sense differ across contexts – yet there may be important policy lessons 
to be gained also from asking the latter question.  

The analysis and results presented here relate to several strands of the literature within 

economics. Methodologically, this paper is closest to the literature on the emergence and 
evolution of test score gaps between different racial groups or gender (see e.g. Fryer and 

Levitt 2004, 2006, 2010, 2013; Todd and Wolpin 2007) and to the literature on value-added 
models of achievement using household-based panel data (see e.g. Todd and Wolpin 2003, 
2007; Fiorini and Keane 2014). Additionally, the methodology of the paper also draws upon 

the literature on mapping test scores on a comparable metric using Item Response Theory 
(IRT) models which are commonly used in comparative educational assessments (see e.g. 
Van der Linden and Hambleton 1997, Mullis et al. 2004, OECD 2013) but are rare within 

development economics (for notable exceptions, see Das and Zajonc 2010; Andrabi et al. 
2011).  

 
 
4  For notable exceptions using Latin American data see Berlinski et al. (2008) and Berlinski et al. (2009). There is also a broader 

inter-disciplinary literature (see e.g. Engle et. al. 2007) but it is mostly associational. 

5  For a detailed discussion of why policy needs to increasingly focus on learning goals rather than enrolment or inputs, see 
Pritchett (2013). This shift in priorities is increasingly embodied in recent policy discussions (see e.g. Muralidharan, 2013 for 

India) including discussions on the formulation of international development targets after the expiration of the Millennium 
Development Goals in 2015 (UN, 2013). This change in focus is especially relevant now given that enrolment is high in most 

countries and a large body of evidence has emerged that improvements in school inputs, as opposed to pedagogy or 

teaching reforms, have a very weak relationship to learning improvements (see e.g. Glewwe et. al.2013, Kremer et al. 2013, 
Das et. al.2013 and McEwan 2013). That looking at quantity of schooling alone may be misleading was emphasized in an early 

contribution by Behrman and Birdsall (1983). 
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The results speak directly to a large, and rapidly growing, literature that documents low levels 

of learning in developing countries (see Glewwe and Kremer 2006 for an authoritative 
review) and experiments with different interventions to improve these low levels of learning 

(see Kremer et al. 2013 and McEwan 2013 for meta-analyses). Results on differences in the 
productivity of a school year in producing test scores relate directly to studies seeking to 
explain the effect of differential schooling quality to growth (Hanushek and Kimko 2000, 

Hanushek and Woessmann 2008, Schoellman 2012 and Kaarsen 2014) and echo similar 
questions from the cross-country growth literature about why productivity per worker differs 
vastly across countries (e.g. Hall and Jones 1999); indirectly, differences in the productivity of 

schooling may relate also to differences in the quality of management across different 
countries (Bloom and Van Reenen 2007, 2010; Bloom et. al. 2014).6  

The rest of this paper is structured as follows: Section 2 describes the data used in this paper 

and puts the samples in context by comparing achievement with the international test 

distribution in TIMSS 2003; Section 3 investigates stochastic dominance of test outcomes 
across age groups and assesses whether learning gaps seems to narrow or widen over time 
between countries; Section 4 estimates value-added models of achievement, presenting 

assessments of school effectiveness and of inter-group differences in achievement; it also 
presents some sensitivity analyses for robustness of results; Section 5 discusses the findings 
and concludes. 

2. Data and context 

2.1 Data 

This paper uses data collected by the Young Lives study in Ethiopia, India (Andhra Pradesh 

state), Peru and Vietnam which has tracked two cohorts of children over multiple rounds 
since 2002. The older cohort (`OC' hereafter, born in 1994/95) was aged about 8 years and 
the younger cohort (`YC' hereafter, born in 2001/2) was aged between 6-18 months at the 

time of the first wave of the survey in 2002. In each country, 2000 children of the younger 
cohort and 1000 children in the older cohort were surveyed.7 Two subsequent waves of 
household-based data collection were carried out in 2006 and 2009. The data are clustered 

and cover 20 sites in each country across rural and urban areas.8 In cases where children 
have moved from the original communities they were surveyed in since 2002, the study 
tracked them to their new location. As a result attrition in the data is very low with more than 

90% of the original sample still in the survey in 2009 in each country. In this paper, I use test 

 
 
6  In seeking to use comparable micro data to study cross-country differences in productivity, analysis in this paper also 

resembles similar recent attempts in other economic sectors. See, for example, Hsieh and Klenow (2009) who study factor 

productivity and misallocation across Chinese and Indian firms or Gollin et al. (2014) who investigate the agricultural 

productivity gap in developing countries using household survey data. 

7  The only exception is Peru where only 716 children in the older cohort were surveyed due to resource constraints. 

8  Sites correspond to sub-districts in Ethiopia (kebeles), India (mandals) and Vietnam (communes) and to districts in Peru. Sites 
were chosen purposively to reflect the diverse socio-economic conditions within the study countries and therefore are not 

statistically representative for the country: comparisons with representative datasets like the DHS samples do show however 
that in each of the countries, the data contain a similar range of variation as nationally representative datasets (Outes-Leon 

and Sanchez, 2008; Kumra, 2008; Escobal and Flores, 2008; Nguyen, 2008). 
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data on quantitative skills for both cohorts from the 2006 and 2009 rounds.9 Figure 1 
presents the age of children in the two cohorts at each survey wave.10 

Figure 1 Age of children in Young Lives survey rounds 

 

Note: Graph shows median age of children and time of interview across countries. 

Table 1 presents descriptive information about the educational trajectories and progression 

of children in the different age samples in Young Lives at different ages which will be of 

central importance in interpreting all results in this paper. Three patterns from this Table are 
worth highlighting: ever-enrolment is high across all countries with nearly all children having 
been enrolled at some point in primary school; the age of entry varies importantly between 

countries, being the lowest in India (with about 44% of children already in school by 5 years 
of age) and highest in Ethiopia (with an average above 7 years); and the rates of drop-out by 
the age of 15 also importantly vary with the highest dropouts being in India and Vietnam 

where just under a quarter of the 15-year old sample is no longer enrolled in school. 
  

 
 
9  The 2002 round had limited achievement data. On quantitative proficiency, only a single test item (`2 x 4 = ?') was 

administered. 

10  Fieldwork typically took between 4-6 months in each country in each round. The timing of the survey rounds shown in Figure is 
thus only indicative. 
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Table 1 Enrolment and grade progression of children in Young Lives 

Cohort Variable Statistics Ethiopia India Peru Vietnam 

Younger cohort (YC) Age of starting school Mean 6.9 5.78 6.04 6.05 

  SD 0.85 0.82 0.42 0.27 

Older cohort (OC) Age of starting school Mean 7.19 5.04 5.88 6.07 

  SD 1.52 0.71 0.57 0.48 

YC 2006 (5 years) Enrolment Mean 0.04 0.45 0.01 0.01 

  SD 0.19 0.5 0.1 0.08 

YC 2009 (8 years) Enrolment Mean 0.77 0.99 0.98 0.98 

  SD 0.42 0.1 0.13 0.13 

OC 2006 (12 years) Enrolment Mean 0.95 0.89 0.99 0.97 

  SD 0.22 0.32 0.1 0.18 

OC 2009 (15 years) Enrolment Mean 0.89 0.77 0.92 0.77 

  SD 0.31 0.42 0.27 0.42 

YC 2009 (8 years) Highest grade completed Mean 0.64 1.63 1.31 1.71 

  SD 0.77 1.00 0.58 0.57 

OC 2006 (12 years) Highest grade completed Mean 3.17 5.61 4.91 5.57 

  SD 1.68 1.25 1.11 0.94 

OC 2009 (15 years) Highest grade completed Mean 5.55 8.15 7.72 8.29 

    SD 2.05 1.73 1.31 1.25 

Younger cohort (`YC') were born in 2001/2002. Older cohort (`OC') were born in 1994/95  
Age of starting school is summarised in both cohorts over those individuals who have enrolled in school at some point before the 
survey round in 2009. 

In each round, a range of background information and child-specific data, including cognitive 

and nutritional outcomes, was collected.11 In 2006, quantitative skills were tested for the 
younger cohort (then aged about 5 years) using the 15-item Cognitive Developmental 
Assessment tool developed by the International Evaluation Association Preprimary Project; a 

10-tem Mathematics test was administered to the older cohort, then aged about 12 years, 
which included six math problems from the publicly released items from the fourth grade 
tests of the Trends in International Mathematics and Science Study (TIMSS) 2003 round. In 

2009, a 29-item mathematics test was administered to the younger cohort and a 30-item test 
to the older cohort.12  

The analysis in this paper requires generating comparable test scores for each cohort/round 

sample and further, for the 12-year old sample, generating test scores that are directly 

comparable to test scores from the TIMSS 4th grade sample. This is achieved using Item 
Response Theory (IRT) models which are estimated as in Das and Zajonc (2010) who linked 
responses to mathematics questions administered in two states of India to the TIMSS 8th 

Grade test. The use of IRT models is standard in educational assessments to generate test 
scores that are comparable over time or across different populations; it is used, among other 
applications, in the generation of test scores for the GRE, SAT, TIMSS, PISA and NAEP in 

the US. The survey instruments, including tests, were harmonized across countries in each 
round, allowing us to generate test scores on a comparable scale across countries.  

 
 
11  Summary statistics on these variables will be presented in Section 4 at the point they are being introduced in value-added 

specifications of achievement production. 

12  See Cueto et al. (2009) and Cueto and Leon (2013) for details of the psychometric testing in Young Lives across different 
rounds.   
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IRT models provide several advantages for the purpose of this analysis: first, by explicitly 

mapping the relationship between the probability of answering a particular test item correctly 
and an individual's ability, they provide a less arbitrary aggregate measure of proficiency than 

a percentage correct score which assigns equal weight to all questions, regardless of 
difficulty; second, they allow for linking across samples even with only partial overlap of test 
items; and third, they provide for a more robust framework for diagnosing comparability in 

item performance across contexts, which may be violated due to, for example, translation 
issues or cultural specificity of items. 

Item Response models only identify ability (θ ) up to a linear transformation i.e. any 

transformation of the form a+ bθ  is an equally valid test score. This implies that in the 

absence of common items, which can be used to `anchor' estimates in two samples, we 
cannot compare the absolute levels of achievement across two samples. Since tests were 
not harmonized across rounds or across cohorts in Young Lives, I cannot link test scores on 

a comparable scale over time or across cohorts.  

Appendix 1 provides a brief explanation of IRT and details the procedures for the generation 

of test scores, as well as analyses to check for and accommodate instances of the differential 
performance of items across the four countries. In this paper, maximum likelihood estimates 

of ability are used. 

2.1 What are absolute learning levels in these samples? 

In this section, I compare the performance of the12-year old sample in the Young Lives data 
to the performance of fourth grade students covered by the TIMSS assessment in 2003 who 

were administered a subset of the same questions. This is useful for putting these samples in 
context but also is valuable information in its own right: none of these countries have been 
covered by the TIMSS 4th Grade assessment previously although some comparisons at 15 

years of age exist.13  

Table 2 presents the proportion of test-takers in the Young Lives sample, and in the TIMSS 

4th Grade sample from select countries which had participated in the 2003 round, who 
answered the six common questions correctly. As is clear from the Table, a smaller 

proportion of 12-year old children in the Young Lives sample answer the common test 
questions correctly than 10-year old children in most OECD economies. The only exception 
is Vietnam where the proportion correct across questions seems to be comparable to many 

OECD country samples and is significantly higher than in the other Young Lives countries for 
most questions. 
  

 
 
13  The PISA assessment at the age of 15 years has previously covered Peru (in 2000, 2009 and 2012), Vietnam (2012) and two 

states in India (2009), although not Andhra Pradesh the state covered by the Young Lives study. Ethiopia has never been 

covered by TIMSS or PISA. 
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Table 2 Proportion answering TIMSS questions correctly (selected countries  
vs. Young Lives 12-year-olds) 

 Item details 

 TIMSS Item Number and Cognitive Domain 

 Q1 Q2 Q3 Q4 Q5 Q6 

 M011007 M011024 M011011 M011004 M031310 M031162 

 Using 
concepts 

Knowing 
facts and 

procedures 

Solving 
routine 

problems 

Using 
concepts 

Solving 
routine 

problems 

Using 
concepts 

TIMSS        

Canada - Quebec 0.925 0.926 0.847 0.894 0.69 0.636 

England 0.929 0.959 0.875 0.858 0.787 0.818 

Hong Kong 0.977 0.983 0.916 0.848 0.95 0.746 

Italy 0.924 0.968 0.831 0.85 0.731 0.785 

Japan 0.968 0.988 0.928 0.895 0.893 0.9 

Morocco 0.699 0.775 0.457 0.475 0.441 0.491 

Netherlands 0.976 0.949 0.949 0.896 0.893 0.864 

Philippines 0.633 0.859 0.573 0.6 0.282 0.416 

Singapore 0.974 0.97 0.936 0.895 0.941 0.878 

Tunisia 0.813 0.739 0.609 0.495 0.622 0.376 

USA 0.929 0.936 0.884 0.887 0.674 0.666 

Young Lives        

Ethiopia 0.606 0.716 0.512 0.504 0.404 0.574 

India (A.P.) 0.737 0.822 0.603 0.682 0.385 0.711 

Peru 0.701 0.912 0.679 0.769 0.508 0.65 

Vietnam 0.843 0.938 0.759 0.687 0.751 0.845 

Questions focused on the number content domain and were taken from the released items for the 2003 TIMSS assessment.  
The TIMSS sample is from Grade 4, aged 10 years on average, at the time of testing in 2003. Cells contain unweighted 
proportions. The Young Lives sample is from the older cohort, aged about 12 years at time of testing in 2006. 

Table 2 is inadequate to compare the full learning distribution across the Young Lives 

sample, or to the TIMSS sample, as this requires the aggregation of responses to different 

test items into a single test score. In order to allow such comparisons, I use the six common 
items from TIMSS as anchor items and generate comparable IRT test scores.14  

Before presenting the IRT estimates, it is useful to point out that the assessment in this age 

group is affected importantly by ceiling and floor effects, thus not capturing the full spectrum 
of ability. About 33% of children in Vietnam, 18% in India, 8% in Peru and 4% in Ethiopia 

answered all ten questions correctly while about 8% of children in Ethiopia, 6% in India, 3% 
in Vietnam and 1% in Peru answered none correctly. IRT maximum likelihood estimates are 
undefined when respondents answer fewer questions correctly than would be expected by 

guessing or answer all questions correctly. The common solution adopted in practice to 
address this issue is to bound the upper and lower limit of the ability distribution.15 For this 
sample, scores are bounded between [0,1000]. Since the mean of the distribution may be 

 
 
14  Item characteristics, i.e. the item specific parameter values, were taken from the TIMSS 2003 report for the common items and 

treated as known with the item characteristics of the other questions and the ability of the sample individuals treated as 

unknown parameters to be estimated. TIMSS reports test scores by rescaling the proficiency estimates to have a mean of 500 
and a standard deviation of 100 for their international sample; I follow the same procedure in order to keep test scores exactly 

comparable to the TIMSS sample. 

15  For example, TIMSS and Das and Zajonc (2010) bound the ability distribution between [5,995] and until their recent revision of 
scales, GRE scores were bounded between [200,800]. 
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affected by these ceiling and floor effects, I have restricted myself to only comparing the 
performance of the median child for this age sample.16 

Table 3 presents the median of the distribution of mathematics achievement in the 12-year 

old sample and the proportion of children who fall below the low and intermediate 

benchmarks developed by TIMSS and linked to their test scale for mathematics.17 The 
median child in Ethiopia, India and Peru is below the median in the TIMSS 4th Grade sample 
and with significant gaps in proficiency compared to children in OECD economies.  

Table 3 Comparing 12-year-old children in Young Lives to TIMSS 4th grade sample 

Country Median grade Median score % below low % below 
intermediate 

    benchmark (400) benchmark (475) 

Young Lives sample (12 years old, 2006) 

Ethiopia 4 394 52 82 

India 7 460 28 54 

Peru 6 454 25 59 

Vietnam 7 525 13 38 

TIMSS 4th grade sample (selected countries, 2003) 

Australia 4 504 12 36 

Canada - Quebec 4 509 6 30 

Chinese Taipei 4 567 1 8 

England 4 536 7 25 

Hong Kong 4 578 1 6 

Italy 4 507 11 34 

Japan 4 568 2 11 

Netherlands 4 542 1 11 

Russian Federation 4 533 5 24 

Singapore 4 601 3 9 

United States 4 522 7 28 

Test scores are IRT scores linked to the TIMSS 2003 assessment using item parameters of publicly released items for anchoring 
and normalised as in TIMSS.  

TIMSS normalizes scores to have a mean of 500 and standard deviation of 100 in the international pooled sample. TIMSS sample 
performance taken from Mullis et. al. (2004). 

Test scores are importantly affected in this sample by ceiling and floor effects: about 33% of children in Vietnam, 18% in India,  
8% in Peru and 4% in Ethiopia answered all ten questions correctly and for these children the score is defined by the ceiling of 
1000.  

About 8% of children in Ethiopia, 6% in India, 3% in Vietnam and 1% in Peru answered no questions correctly. Scores are 
bounded above and below at [0,1000].  

This affects the mean of the distribution but allows for unproblematic comparison of the median and proportion attaining 
benchmarks. 

More meaningfully, over a quarter of the sample in India and Peru, and about half in Ethiopia, 

fail to reach even the Low International Benchmark, defined by TIMSS as follows: “Students 

have some basic mathematical knowledge. Students demonstrate an understanding of whole 
numbers and can do simple computations with them.” (Mullis et al., 2004). In Peru and India, 

 
 
16  This bounding does not affect the qualitative results presented in this section which are also borne out by plausible value 

estimates not subject to the same concerns. For the other age-samples presented in this paper, this bounding exercise affects 

only a small proportion of the sample as the tests provide a smooth measure of achievement with no ceiling or floor effects. 
The censoring of achievement for the 12-year old sample will also present challenges for the estimation of value-added 

models later since the inclusion of censored regressors can induce bias; I will test for this concern explicitly in Section 4. 

17  TIMSS defines four international benchmarks -- Low (400), Intermediate (475), High (550) and Advanced (625) -- each with 
descriptions of the level of skills. See Mullis et al. (2004) for details. 
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the median child is behind the intermediate benchmark for fourth-graders even though he is in 
6th and 7th grades respectively; despite the 2-3 additional years of schooling, this is notably 
worse than for any of the selected countries from the TIMSS sample displayed in Table 3. 

Table 3 and the foregoing discussion highlight two patterns quite starkly: that there exist vast 

differences in the mathematical knowledge acquired by children of the same age across the 
four different countries in the Young Lives samples; and that the absolute levels of learning, 
with the possible exception of Vietnam, are very low in comparison to OECD countries, even 

though in Peru and India the children have had two extra years of schooling compared to the 
OECD sample. 

3. When do gaps emerge and how 
do they evolve? 
The previous section documented that by the age of 12 years, there is a substantial 

difference in the performance of children in the four study countries on a mathematics test. In 
this section, I analyse whether a similar pattern is also discernible at other ages and whether 

there are not only systematic levels differences between children in different countries but 
also differences in how much they learn over time.  

Table 4 presents descriptive statistics of the quantitative ability scores at each of the other 

three ages at which testing was done i.e. at the age of 5 years, 8 years, and 15 years. The 

test scores are comparable across countries at each age and are normalized internally to 
have a mean of 500 and a standard deviation of 100 at each age; test scores are not linked 
across cohorts or over time and therefore cannot be directly compared across age groups. 

Table 4 Linked test scores at 5, 8, and 15 years 

Age group Statistics Countries  

Ethiopia India Peru Vietnam Total 

5 years Mean 454 498.3 520.4 524.7 499.8 

 p25 402.4 442.1 462.9 472.6 442.9 

 p50 456.1 491 511 522.7 495.3 

 p75 503.8 540.7 569.1 575.6 550.8 

 SD 102.1 94.8 97.6 89.1 99.9 

 N 1846 1904 1893 1935 7578 

8 years Mean 419.1 495.9 518.2 563.6 500 

 p25 377.7 458.2 491.4 535.9 456.5 

 p50 426 502 530 570 518.7 

 p75 488.8 542.3 555.8 600.5 559.4 

 SD 100.7 84.6 68.3 85.3 100 

 N 1885 1930 1943 1964 7722 

15 years Mean 442.7 482.1 527.7 556 500 

 p25 433.1 467 512.9 528 478.3 

 p50 480.1 508.4 535.9 561.6 522.6 

 p75 512 543.1 554.6 590.7 555.7 

 SD 106.5 99.6 54.9 79.7 100 

  N 974 977 678 972 3601 

Scores are IRT test scores generated within an age sample, pooling data from all countries, and normalised to have a mean of 
500 and an SD of 100 in the pooled sample. Scores are comparable across countries but not across age groups. 
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The most striking pattern in Table 4 is that the ranking of countries seen at the age of 12 

years is already evident at the age of 5 years, which pre-dates schooling for most of the 
sample. Given the literature from OECD countries, combined with a growing literature from 

developing countries which also documents the cognitive effects of early childhood 
influences (e.g. Glewwe et al., 2001 and Maccini and Yang, 2009 on the effect of nutrition in 
early childhood) on educational achievement, this is perhaps unsurprising. However, this 

pattern is notable because analysis on the cognitive impact of environmental influences 
which precede school enrolment (with the exception of nutrition or health shocks) remains 
very limited in developing countries. 

The second notable pattern is that the ranking of countries in the Young Lives sample is 

unchanged across age groups. Although occasionally differences between countries are not 
statistically significant - at the age of 5 between Vietnam and Peru, and at the age of 12 
between Peru and India - the general ranking of the four country samples is remarkably 

stable. This ranking is also the same as the ranking implied by the PISA test scores where 
Vietnamese children score significantly higher than children in Peru and Peruvian children 
score significantly higher than Indian children. 

Mean comparisons are not adequate to make judgments about the entire distribution of 

learning across countries. As Bond and Lang (2013) point out, citing Spencer (1983), the 
ordinality and arbitrary normalization of test scores implies that the only way of reliably 
ranking samples is to look at the cumulative distribution functions (CDFs) of achievement. 

The CDFs of the estimated test scores are plotted for each of the four age groups in Figure 
2. As may be seen, conclusions formed on the basis of the mean comparisons also hold true 
across the entire distribution: there is a clear pattern of stochastic dominance with 

Vietnamese children performing better at every age compared to other samples and with 
Ethiopian children performing distinctly worse.18 With the anomalous exception of the 12-year 
sample, the Peruvian CDF always lies to the right of the Indian CDF. In general, there seems 

to be a clear and stable ranking with Vietnam > Peru > India > Ethiopia in these samples. 
  

 
 
18  In generating Figure 3, and in all subsequent analysis in this paper, I have re-normalized the 12-year old achievement to have 

a mean of 500 and SD of 100 in the pooled Young Lives sample (rather than linked to the TIMSS normalization as in Section 2) 
in order to keep normalization procedures identical for each age group. Ceiling and floor effects in the 12-year old sample can 

be noted in the empirical CDFs. 
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Figure 2 Learning distributions at different ages - Empirical CDFs 

 

Note: CDFs show distribution of test scores estimated with Item Response models pooling all country samples in each age group. 
Scores are internally normalized to have a mean of 500 and standard deviation of 100 in each age sample. 

Since test scores are not linked across time and across cohorts, Figure 2 is not enough by 

itself to comment on whether differences between country samples are exacerbated as 
children grow older. Further, even if gaps have grown, Figure 2 does not answer whether any 
further divergence is only caused by amplification of initial gaps (through the self-productivity 

of skills) or through other channels in achievement production. In Figures 3a and 3b, I 
present non-parametric plots of achievement in 2006 and achievement in 2009 for the four 
country samples in both cohorts. The essential idea behind these graphs is simple: 

conditional on test scores in 2006, do we see children in the four countries achieve similar 
results in 2009 (in which case gaps at later ages only reflect past divergence), or do we see 
children in some countries perform better than children in other countries who had scored 

similarly in 2006 (in which case there is additional divergence)?  

Figure 3 Progress in learning across countries 

      

Lines are local polynomial smoothed lines shown with 95% confidence intervals and reference lines for relevant quantiles. The 
sample is restricted to observations not suffering from ceiling or floor effects in either round. 
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Between 5 and 8 years of age (Figure 3a), there seems to be considerable divergence 

between countries which is similar to the ranking of the country samples on the levels of 
achievement at age 5: children in Vietnam learn more than children in Peru, who in turn learn 

more than children in India and Ethiopia respectively, even conditional on having achieved 
the same score at age 5. Between the age of 12 and 15 (Figure 3b), however, a somewhat 
different picture emerges: children in Vietnam and Peru display near-identical trajectories of 

achievement which are higher than children in Ethiopia and India, which are almost 
indistinguishable from each other. The difference between the two sets of countries seems to 
be a difference in the intercepts and not the slopes.19 

4. Sources of divergence: results 
from value-added models 
Analysis presented in the previous section documents the pattern of divergence across 

different country samples but is only partly informative about the sources of this divergence. 
Documenting patterns of learning even conditional on past achievement is insufficient by 
itself to say, for example, whether the divergence is primarily a factor of school inputs or a 

result of constant application of superior home inputs at every life stage in some contexts 
than others; from a policy perspective, however, identifying sources of divergence is of 
considerable interest. In this section, I estimate value-added models of achievement 

production to address this issue. 

4.1 Do child-specific endowments explain divergence? 

As a benchmark case, I first explore sources of achievement across the four countries at 
each age group as follows: 

Yic,a =α + β1.θc  (1) 

  
+ β2.Yic,a−1  (2) 

  +β3.Xic  (3) 

 
+β4.TUic,a +εica  (4) 

 where 
  
Yic,a   is the test score of child  i  in country  c   at age  a ;  θc  is a vector of country 

dummy variables (with Ethiopia as the omitted category);  X ic  is a vector of child-specific 
characteristics which includes caregiver's education (in completed years), child's age in 
months at time of testing, child's height-for-age z-scores at time of testing (based on WHO 

2005 standards), a wealth index based on durables owned by household and access to 

 
 
19  Similar patterns of divergence in these data are also documented in Rolleston (2014) and Rolleston et al. (2013). The most 

important difference between their analysis and this paper is in the use of IRT models here which offer a better conceptual 

basis for cross-cultural comparison, allow different test items to contribute differently to the aggregate test score and provide a 

more continuous measure of ability in comparison to percentage correct scores as used by both Rolleston (2014) and 
Rolleston et al. (2013). Despite differences in method, however, the basic descriptive findings are similar. 

 Rolleston (2014) and Rolleston et al. (2013) do not attempt comparisons of individual performance in the Young Lives sample 
with the performance of the international test distribution in TIMSS or an analysis of the sources of divergence across 

countries. 
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services and dummy variables for being male and being the eldest child; TU is a vector 
controlling for time use across different tasks on a typical day (with sleeping being the 
omitted category). The estimation is carried out separately for the two cohorts (i.e. at ages 8 

and 15) by pooling all country samples within cohort.  

Inclusion of controls is sequential as detailed in Equations 1-4 and naturally changes the 

interpretation of coefficients. Specification (1) displays mean difference between countries at 
the ages of 8 and 15 years; Specification (2) is the linear regression analogue of Figure 3 

and shows the divergence between the countries, conditional on lagged individual test 
scores; Specifications (3) and (4) further explore if the divergence is explained by the levels 
of covariates in  X  or in current time use respectively. Time use is entered in the final step 

since it potentially conflates (through the categories of time spent at school or studying after 
school) school inputs with home-based inputs.20  

Specifications (3) and (4), which include previous test scores and a range of controls, are 

commonly known as `lagged value-added models' (VAMs) of achievement 

production(Andrabi et. al., 2011, Todd and Wolpin, 2007). Estimating achievement 
production functions is difficult as the full history of inputs applied at each age, as well as the 
full vector of child specific endowments, is not observed in any dataset. Lagged value-added 

models attempt to deal with this problem by entering the lagged achievement score in the 
estimation as a summary statistic for child-specific endowments and the full history of inputs. 

As Todd and Wolpin (2003, 2007) discuss, this strategy depends on strong assumptions 

(e.g. geometric decay of inputs) and may suffer bias from measurement error and 
unobserved heterogeneity. The observed level of bias in parameters estimated by value-

added models, however, seems to be low in practice across a range of applications including 
in comparisons with experimental estimates (Deming et al. forthcoming, Kane and Staiger 
2008, Kane et al. 2013, and Angrist et al., 2013), with quasi-experimental estimates (Chetty 

et al., forthcoming), dynamic panel data estimates (Andrabi et al., 2011) and in simulated 
data with a variety of non-random assignment mechanisms (Guarino et al., forthcoming). 
These VAMs will be used as the workhorse specifications for the analysis of divergence in 

this paper although I will investigate possibilities of bias due to unobserved heterogeneity and 
measurement error later in this section. 
  

 
 
20 The inclusion of time use categories should thus be considered here in the spirit of a bounding exercise, exploring the upper 

bounds of how much may be explored by means of variables determined at home. Given that categories of time use (e.g. time 

spent studying after school) are likely to be correlated with unobserved time-varying investments into children's learning (e.g. 

parental attention to schooling), and that time use patterns are choices not traits and thus maybe endogenous, coefficients on 
time use categories should be interpreted with care. 

 The bounding exercise is also important in accounting for differences in enrolment across countries at different ages: as Table 
1 documents, that nearly a third of the children in the Ethiopian sample are not yet enrolled at the age of 8 years while by the 

age of 15 drop-out rates are higher in India and Vietnam than in the other two countries. 
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Table 5 Descriptive statistics of control variables 

  Ethiopia India Peru Vietnam 

  Mean SD N Mean SD N Mean SD N Mean SD N 

Panel A: Younger cohort 

Child and background characteristics 

Male 0.53 0.5 1881 0.53 0.5 1903 0.5 0.5 1892 0.51 0.5 1916 

First-born child 0.23 0.42 1881 0.39 0.49 1903 0.37 0.48 1892 0.46 0.5 1916 

Caregiver's Education 2.95 3.73 1874 3.7 4.44 1900 7.75 4.64 1892 6.88 3.83 1908 

Age in months 97.48 4.05 1879 96.03 3.92 1903 95.35 3.63 1890 97.09 3.75 1915 

Height-for-age z-score -1.21 1.05 1877 -1.44 1.03 1898 -1.14 1.03 1890 -1.07 1.05 1900 

Wealth index (2006) 0.28 0.18 1881 0.46 0.2 1902 0.47 0.23 1892 0.51 0.2 1914 

Time use (hours spent on a typical day) 

doing domestic tasks 1.66 1.37 1881 0.33 0.58 1903 0.87 0.7 1887 0.54 0.66 1899 

tasks on family farm/business etc. 1.5 2.22 1880 0.01 0.1 1903 0.25 0.66 1886 0.09 0.48 1897 

paid work outside household 0.01 0.28 1880 0.01 0.2 1903 0 0.08 1887 0 0.07 1897 

at school 4.91 2.54 1881 7.72 0.95 1903 6.02 0.9 1887 5.04 1.31 1898 

studying outside school time 0.99 0.89 1881 1.86 1.09 1903 1.87 0.83 1886 2.82 1.49 1897 

general leisure etc. 4.44 2.39 1881 4.71 1.54 1903 4.13 1.65 1887 5.55 1.65 1898 

caring for others 0.83 1.21 1881 0.21 0.5 1903 0.48 0.88 1886 0.24 0.66 1878 

Panel B: Older cohort 

Child and background characteristics 

Male 0.51 0.5 971 0.49 0.5 976 0.53 0.5 664 0.49 0.5 972 

First-born child 0.2 0.4 971 0.31 0.46 976 0.31 0.46 664 0.37 0.48 972 

Caregiver's Education 2.93 3.49 967 2.86 4.05 976 7.27 4.57 663 6.77 3.85 971 

Age in months 180.34 3.58 971 179.76 4.24 975 179.1 4.1 661 181.12 3.83 972 

Height-for-age z-score -1.37 1.28 968 -1.64 1 970 -1.48 0.9 657 -1.43 0.91 967 

Wealth index (2006) 0.3 0.17 971 0.47 0.2 976 0.52 0.23 664 0.52 0.19 970 

Time use (hours spent on a typical day) 

doing domestic tasks 2.55 1.65 970 1.45 1.35 975 1.42 1.07 662 1.44 0.96 958 

tasks on family farm/business etc. 1.34 2.09 970 0.49 1.72 975 0.68 1.49 662 1.05 2.13 958 

paid work outside household 0.4 1.63 970 1.04 2.77 975 0.41 1.72 662 0.47 2 958 

at school 5.55 2.17 970 6.39 3.59 975 5.91 2.01 662 4.23 2.34 946 

studying outside school time 1.84 1.23 970 2.01 1.54 975 2.09 1.12 662 3.06 2.13 941 

general leisure etc. 2.98 1.71 970 4.1 2.32 975 3.24 1.48 662 4.97 2.23 955 

caring for others 0.67 0.93 970 0.28 0.75 975 0.73 1.18 662 0.16 0.64 951 

Children in the older cohort were born in 1994-95 and children in the younger cohort in 2001-02. Caregiver's education is defined in completed years; 
wealth index is an aggregate of various consumer durables and access to services at the household level.  Height-for-age z-score is computed as per 
WHO standards. Unless indicated otherwise, the values of variables are from 2009.  

Summary statistics of the controls used in the estimation of achievement production functions 

are presented in Table 5. Results from the estimation of Specifications 1-4 are presented for 
both cohorts in Table 6. In both cohorts, the mean differences in the test scores are 
statistically different across the four countries and substantial in magnitude (Cols. 1 and 5). 

Controlling for the lagged test achievement (Cols. 2 and 6) reduces the gap between 
countries somewhat in the younger cohort and substantially in the older cohort (eliminating 
most of the gap between Peru and Vietnam and between Ethiopia and India). Gaps decline 

further upon inclusion of background variables in X but the magnitude of decline is small as a 
proportion of the initial gap. 
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Table 6 Do home factors and child-specific endowments explain divergence? 

  (1) (2) (3) (4) (5) (6) (7) (8) 

VARIABLES Dep var: Mathematics score (2009) 

  8 years old (Younger cohort) 15 years old (Older cohort) 

Country dummies 

India 76.3*** 64.5*** 61.6*** 16.3*** 39.4*** 13.8*** 7.38* 6.62 

 (3.01) (2.92) (2.97) (3.58) (4.67) (4.11) (4.29) (4.23) 

Peru 96.7*** 79.1*** 65.2*** 48.2*** 85.4*** 62.6*** 47.4*** 57.6*** 

 (2.75) (2.71) (2.69) (2.85) (4.00) (3.53) (3.76) (3.81) 

Vietnam 146*** 127*** 108*** 92.2*** 113*** 66.0*** 55.4*** 69.5*** 

 (3.04) (3.06) (2.97) (3.45) (4.26) (3.95) (4.00) (4.26) 

Background characteristics 

Male   3.79** 4.94***   8.77*** 11.1*** 

   (1.68) (1.60)   (2.48) (2.47) 

First-born child   6.56*** 4.81***   4.38* 2.61 

   (1.68) (1.61)   (2.63) (2.50) 

Caregiver's education level   2.99*** 2.18***   1.12*** 0.33 

   (0.24) (0.23)   (0.35) (0.33) 

Age in months   2.94*** 2.80***   -0.51 0.033 

   (0.23) (0.22)   (0.32) (0.30) 

Height-for-age z-score (2009)   10.3*** 7.66***   5.49*** 4.95*** 

   (1.05) (0.97)   (1.35) (1.29) 

Wealth index (2006)   74.6*** 47.8***   67.1*** 44.7*** 

   (5.36) (5.08)   (7.70) (7.38) 

Time use (hours spent on a typical day) 

doing domestic tasks    0.76    2.70* 

    (1.31)    (1.47) 

doing tasks on family farm etc.    -2.07*    0.79 

    (1.22)    (1.30) 

doing paid work outside hh    0.32    0.29 

    (8.52)    (1.31) 

at school    13.6***    8.59*** 

    (0.99)    (1.16) 

studying outside of school time    13.2***    8.07*** 

    (0.93)    (1.19) 

general leisure etc.    1.64**    3.11*** 

    (0.82)    (1.09) 

caring for others    0.58    -0.60 

    (1.25)    (1.73) 

Lagged test score (2006)  0.27*** 0.12*** 0.10***  0.48*** 0.41*** 0.33*** 

  (0.011) (0.0099) (0.0095)  (0.016) (0.016) (0.014) 

Constant 421*** 301*** 57.2** 0.10 443*** 228*** 331*** 194*** 

 (2.37) (5.51) (22.5) (23.8) (3.41) (8.32) (57.7) (57.0) 

Observations 7,573 7,573 7,522 7,465 3,595 3,583 3,554 3,513 

R-squared 0.285 0.352 0.450 0.514 0.197 0.397 0.441 0.504 

F-tests of equality of coefficients (p-value) 

India = Peru 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 

India=Vietnam 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Peru=Vietnam 0.00 0.00 0.00 0.00 0.00 0.28 0.00 0.00 

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 

Test scores are IRT scores normalized to have a mean of 500 and SD of 100 in the pooled four-country sample at each age. 
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Inclusion of time use inputs has different effects in the two cohorts. In the older cohort aged 

15, the gap between Ethiopia and Vietnam increases while in the younger cohort aged 8, the 
gap between Ethiopia and the other countries reduces substantially (especially with India 

where it is now at about a fifth of the initial cross-sectional gap). This latter pattern is likely a 
product of the enrolment profiles across country samples since a large proportion of 8-year 
old children in Ethiopia have not yet joined school, and because children in Vietnam and 

India are more likely to have left schooling by 15 than in the other two countries. 

The central pattern in Table 6 is that a substantial gap remains between the country samples; 

even in the most extensive specifications, Ethiopia and Vietnam differ by between 0.7-0.9 SD 
at 8 and 15 years of age, accounting for more than 60% of the cross-sectional gap in test 

scores. These results suggest that while differences in endowments and socio-economic 
background play a role in creating differences across samples, it appears unlikely that this is 
the sole, or perhaps even the main, cause for divergence. 

4.2 Does differential productivity of home inputs explain divergence? 

Specifications 2-4 impose a strong assumption of common parameter coefficients on inputs 

across countries. This assumption is unlikely to hold; there is no reason to assume, for 

example, that a year of maternal education has an identical impact on child test scores in 
Vietnam and Ethiopia. In order to allow for maximum heterogeneity across the four countries, 
I estimate specifications (3) and (4) separately for each country thus allowing all input 

coefficients to differ. Results are presented in Tables 7 and 8 for the 8 year old and 15 year 
old sample respectively. 

As can be seen the coefficients on specific inputs differ greatly across countries. It is, 

however, difficult to directly read from these Tables the importance of this differing 
productivity for explaining test score gaps. In order to facilitate such comparison, I present 

some counterfactual examples applying to each country sample, the input coefficients 
estimated in the different country samples i.e. predicting the mean level of achievement 
keeping the country's level of inputs fixed but varying the coefficients of the inputs (including 

the constant term) to match other countries.21 The results are shown in Table 9. 
  

 
 
21  These are two polar cases where I change either all inputs or all coefficients. In practice, from a policy perspective, it may not 

be feasible or even desirable to change all inputs or coefficients nor is choice limited to only choosing to shift elements of only 

one or the other vector; many more combinations could be explored. The purpose here is only to highlight two contrasting 
possibilities to assess the relative importance of these two channels (differences in the level of inputs and differences in input 

productivity) in explaining divergence. 
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Table 7 Country-specific production functions of achievement: 8 year olds 

  (1) (2) (3) (4) (5) (6) (7) (8) 

 Dep var: Mathematics score (2009) 

 Without time use With time use 

VARIABLES Ethiopia India Peru Vietnam Ethiopia India Peru Vietnam 

Male 1.33 5.04 8.95*** -0.55 2.07 4.52 9.32*** -0.25 

 (6.55) (3.19) (2.47) (2.65) (5.36) (3.52) (2.76) (2.66) 

First-born child 7.17 3.59 9.37*** 7.74* 3.38 2.75 7.89** 8.26* 

 (4.54) (3.05) (3.02) (3.77) (3.66) (3.35) (3.30) (4.06) 

Caregiver's education level 3.37*** 2.91*** 2.69*** 3.73*** 2.28*** 2.25*** 2.52*** 2.34*** 

 (0.79) (0.82) (0.46) (0.88) (0.56) (0.58) (0.43) (0.81) 

Age in months 2.73*** 1.96*** 2.67*** 4.07*** 2.23*** 1.95*** 2.67*** 4.16*** 

 (0.52) (0.60) (0.35) (0.54) (0.50) (0.56) (0.33) (0.56) 

Height-for-age z-score 
(2009) 

14.4*** 9.93*** 6.77*** 10.3*** 7.55*** 8.88*** 6.27*** 7.33*** 

(2.66) (2.07) (2.09) (3.12) (2.33) (1.96) (1.89) (2.17) 

Wealth index (2006) 174*** 44.7 25.3*** 91.7*** 106*** 21.5 25.2*** 64.9*** 

 (27.7) (26.6) (7.86) (27.5) (18.4) (19.7) (7.99) (20.2) 

Time use (hours on a typical day) 

doing domestic tasks     0.47 3.64 7.37*** -4.15 

     (3.66) (4.37) (2.06) (4.46) 

doing tasks on family farm 
etc. 

    0.67 -16.5*** -0.44 -24.7*** 

    (3.55) (5.58) (1.95) (4.86) 

doing paid work outside hh     -4.85 22.0*** -5.49 15.5 

     (8.81) (6.56) (4.95) (9.32) 

at school     12.6*** 22.4*** 9.21*** 5.16 

     (3.57) (2.64) (2.98) (4.84) 

studying outside of school 
time 

    19.8*** 19.9*** 7.61*** 4.65 

    (3.76) (5.03) (1.52) (3.42) 

general leisure etc.     1.26 5.36* 2.33* -2.71 

     (3.20) (2.86) (1.19) (2.98) 

caring for others     2.11 0.96 2.00 -8.75 

     (4.71) (5.04) (1.17) (6.38) 

Lagged CDA score (2006) 0.071** 0.15*** 0.13*** 0.12*** 0.044* 0.14*** 0.13*** 0.089** 

 (0.026) (0.029) (0.020) (0.040) (0.023) (0.028) (0.019) (0.031) 

Constant 77.9 212*** 162*** 47.4 61.7 -6.91 76.7** 56.2 

 (47.6) (59.5) (31.5) (55.8) (63.5) (74.0) (32.8) (61.8) 

Observations 1,835 1,892 1,888 1,907 1,834 1,892 1,881 1,858 

R-squared 0.255 0.177 0.282 0.309 0.374 0.280 0.312 0.353 

Robust standard errors in parentheses. Standard errors are clustered at site level. *** p<0.01, ** p<0.05, * p<0.1 

Test scores are IRT scores normalised to have a mean of 500 and SD of 100 in the pooled four-country sample at each age. 
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Table 8 Country-specific production functions of achievement: 15 year olds 

 (1) (2) (3) (4) (5) (6) (7) (8) 

 Dep var: Mathematics score (2009) 

 Without time use With time use 

VARIABLES Ethiopia India Peru Vietnam Ethiopia India Peru Vietnam 

Male 1.33 5.04 8.95*** -0.55 2.07 4.52 9.32*** -0.25 

 (6.55) (3.19) (2.47) (2.65) (5.36) (3.52) (2.76) (2.66) 

First-born child 7.17 3.59 9.37*** 7.74* 3.38 2.75 7.89** 8.26* 

 (4.54) (3.05) (3.02) (3.77) (3.66) (3.35) (3.30) (4.06) 

Caregiver's education level 3.37*** 2.91*** 2.69*** 3.73*** 2.28*** 2.25*** 2.52*** 2.34*** 

 (0.79) (0.82) (0.46) (0.88) (0.56) (0.58) (0.43) (0.81) 

Age in months 2.73*** 1.96*** 2.67*** 4.07*** 2.23*** 1.95*** 2.67*** 4.16*** 

 (0.52) (0.60) (0.35) (0.54) (0.50) (0.56) (0.33) (0.56) 

Height-for-age z-score (2009) 14.4*** 9.93*** 6.77*** 10.3*** 7.55*** 8.88*** 6.27*** 7.33*** 

 (2.66) (2.07) (2.09) (3.12) (2.33) (1.96) (1.89) (2.17) 

Wealth index (2006) 174*** 44.7 25.3*** 91.7*** 106*** 21.5 25.2*** 64.9*** 

 (27.7) (26.6) (7.86) (27.5) (18.4) (19.7) (7.99) (20.2) 

Time use (hours on a typical day) 

doing domestic tasks     0.47 3.64 7.37*** -4.15 

     (3.66) (4.37) (2.06) (4.46) 

doing tasks on family farm etc.     0.67 -16.5*** -0.44 -24.7*** 

    (3.55) (5.58) (1.95) (4.86) 

doing paid work outside hh     -4.85 22.0*** -5.49 15.5 

     (8.81) (6.56) (4.95) (9.32) 

at school     12.6*** 22.4*** 9.21*** 5.16 

     (3.57) (2.64) (2.98) (4.84) 

studying outside of school time     19.8*** 19.9*** 7.61*** 4.65 

    (3.76) (5.03) (1.52) (3.42) 

general leisure etc.     1.26 5.36* 2.33* -2.71 

     (3.20) (2.86) (1.19) (2.98) 

caring for others     2.11 0.96 2.00 -8.75 

     (4.71) (5.04) (1.17) (6.38) 

Lagged CDA score (2006) 0.071** 0.15*** 0.13*** 0.12*** 0.044* 0.14*** 0.13*** 0.089** 

 (0.026) (0.029) (0.020) (0.040) (0.023) (0.028) (0.019) (0.031) 

Constant 77.9 212*** 162*** 47.4 61.7 -6.91 76.7** 56.2 

 (47.6) (59.5) (31.5) (55.8) (63.5) (74.0) (32.8) (61.8) 

Observations 1,835 1,892 1,888 1,907 1,834 1,892 1,881 1,858 

0.255 0.177 0.282 0.309 0.374 0.280 0.312 0.353 

Robust standard errors in parentheses. Standard errors are clustered at site level. *** p<0.01, ** p<0.05, * p<0.1 

Test scores are IRT scores normalised to have a mean of 500 and SD of 100 in the pooled four-country sample at each age. 
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Table 9 Predicted mean achievement levels under various counterfactual scenarios 

  Younger cohort (8-years) 

Coefficients (β} 

Without time use With time use 

Ethiopia India Peru Vietnam Ethiopia India Peru Vietnam 

Inputs Ethiopia 420.79 485.28 495.47 523.15 420.75 390.94 486.66 488.38 

  (9.87) (10.64) (5.49) (13.48) (10.85) (16.72) (9.62) (19.19) 

 India 450.36 497.32 503.74 539.9 487.38 497.32 516.86 563.24 

  (11.54) (9.59) (4.97) (11.02) (10.39) (9.87) (7.99) (14.79) 

 Peru 470.66 514.64 517.73 559.32 479.48 468.87 517.74 557.66 

  (11.35) (10.7) (4.65) (10.53) (10.93) (10.96) (5.65) (11.68) 

 Vietnam 478.69 518.05 522.35 567.03 492.10 476.78 520.84 568.22 

  (11.08) (9.76) (4.51) (9.16) (12.06) (13.14) (7.09) (11.43) 
 

 Older cohort (15-years) 

Coefficients (β) 

Without time use With time use 

Ethiopia India Peru Vietnam Ethiopia India Peru Vietnam 

Inputs Ethiopia 443.17 448.98 507.7 502.26 443.15 453.52 512.33 524.55 

  (10.54) (10.14) (7.12) (9.21) (12.13) (11.38) (8.5) (12.03) 

 India 495.01 482.61 524.44 529.91 496.15 482.86 531.03 549.28 

  (13.12) (9.84) (6.54) (8.67) (14.96) (10.38) (9.05) (12.55) 

 Peru 493.1 493.53 529.74 546.1 483.25 481.28 529.74 557.88 

  (12.65) (9.86) (6.04) (8.74) (14.14) (10.68) (7.25) (11.58) 

 Vietnam 525.34 515.18 542.1 557.05 521.01 504.53 535.76 558.18) 

  (12.65) (10.25) (6.56) (8.54) (14.1) (11.36) (9.14) (10.56) 

Cells contain linear predictions of test scores using combinations of country-specific production function parameters (β) as 
estimated in Tables 7 and 8 for 8-year and 15-year olds respectively with country-specific input levels (X)   and time use (TU) as in 
Table 5, along with lagged achievement scores from 2006.  Each row shows predicted values of mean achievement  when 
applying, to a given country sample, different country-specific coefficients indicated in column headings. Results are shown for 
specifications with and without time use categories.  

Standard errors of predictions in parentheses. 

The results are informative and telling. In the younger (8 year old) sample, the difference 

between the average levels of achievement between Ethiopia and India seems mostly a 

difference in the inputs of the children (including their test scores at age 5 which reflect 
investments in early childhood): equalizing these in the specifications with time use, but 
maintaining the same production function parameters as estimated in Table 7 for the country, 

reduces the gap between Ethiopia and India by about two-thirds.22  

However, strikingly, the difference between Vietnam, the only `high performer' in our sample, 

and the other three countries seems to lie not in the endowments, including what children 
had learnt prior to school entry, but in the higher rates of learning afterwards: for each of the 
other three countries, considerably more of the learning gap is closed by equalizing 

productivity of inputs than by equalizing the level of inputs. For example, while raising 
Ethiopian inputs to Vietnamese levels only closes 45% of the observed test score gap 
between the countries, equalizing the productivity of the inputs closes about three-quarters; 

similarly, about 70% of the gap between India and Vietnam is covered by equalizing the 
productivity of inputs to Vietnam. 

 
 
22 The reliance on the specifications incorporating time use is particularly relevant here since it captures the differences in 

enrolment between Ethiopia and the other countries at 8 years of age. 
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It is clear from this exercise is that, whereas child endowments and the investments made in 

early childhood are undeniably important, the major divergence with Vietnam is after the age 
of 5 years. Considerably less clear is the source of this divergence. The major difference in 

productivity between Vietnam and the rest comes from the difference in the coefficients on 
the age in months in Table 7: we know that Vietnamese children seem to be learning more 
as they age each month than the children in the other countries but we don't quite know 

why23; this will be investigated in the later subsections.  

Results for the older cohort are rather more mixed. The gap between Ethiopia and India 

seems to be entirely a product of the differences in the endowments across samples 
including the amount learnt till the age of 12 years. In closing the gaps between Vietnam and 

the other countries as well, other than perhaps in India, equalizing the level of all inputs 
seems as effective as equalizing all production function parameters. 

4.3 Do differential exposure to schooling and differential productivity 
of schooling explain divergence? 

As Table 9 documents, only a small portion of the divergence across countries (especially 
with Vietnam) till the age of 8 years is accounted for by the levels and differential productivity 

of home inputs across the four country samples. One possibility that may account for 
divergence after 5 is the differential exposure to schooling across the four country samples; 
for example, Ethiopian children enter school much later than in the other countries (Table 1) 

and thus have less schooling at every age in the sample than the other countries. Similarly 
we would expect given previous work (Hanushek and Kimko 2000, Schoellman 2012 and 
Kaarsen 2014) that the quality of schooling differs across these contexts, which could also 

contribute to the growth of these gaps.  

In order to study the importance of these schooling-based sources of divergence, I estimate 

the following specifications: 

  
Yica =αc + β1.Yic,a−1+ β2.Xic + β3.gradeica  (5) 

   
+β4.TUic,a +εica  (6) 

where in addition to variables defined previously, I also include a variable for the highest 

grade completed by the child at age a. As in the previous specification, the estimation is 

carried out separately for each country sample and I estimate the production function both 
with and without the time use inputs. The parameter of interest is  β3  which, if it differs across 
countries, would indicate differences in the amount of progress in quantitative skills per grade 

completed across the different educational systems.24 
  

 
 
23 The difference between the coefficient on age in Vietnam and in the other countries is invariably statistically significant in 

cross-equation tests. 

24  Note that grades completed may be regarded as an outcome of educational systems rather than merely an input into learning 
and thus raise concerns about its endogeneity (for example if, as is likely, the same factors determine both grade completion 

and amount learnt in school). Identification of 
 β3

 in this case rests on the assumption that all such factors are either directly 

controlled for in the estimation or effectively proxied for by the lagged achievement score, which is the maintained assumption 
underlying value-added models. In Sec. 4.4 I will document how this channel of potential bias does not seem to be important 

in the case of Peru and Vietnam, where I am able to generate alternative IV estimates. 
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Table 10  Comparing effectiveness of a grade of schooling: 8-years old 

VARIABLES (1) (2) (3) (4) (5) (6) (7) (8) 

Dep var: Mathematics score (2009) 

Without time use With time use 

Ethiopia India Peru Vietnam Ethiopia India Peru Vietnam 

Highest grade completed 40.9*** 27.4*** 33.6*** 60.9*** 28.4*** 25.4*** 32.6*** 55.2*** 

 (4.67) (2.03) (3.60) (14.6) (4.48) (1.62) (3.55) (10.9) 

Male 3.26 12.7*** 8.73*** 1.65 4.44 11.6*** 8.92*** 1.62 

 (5.61) (3.05) (2.22) (2.39) (4.82) (3.13) (2.47) (2.66) 

Eldest 3.97 5.74** 8.45*** 6.63** 1.63 4.59 7.09** 7.18** 

 (4.08) (2.60) (2.89) (2.98) (3.72) (3.01) (3.09) (3.16) 

Caregiver's education level 3.76*** 2.40*** 2.23*** 3.16*** 2.74*** 1.86*** 2.10*** 2.18*** 

 (0.66) (0.70) (0.49) (0.80) (0.52) (0.49) (0.48) (0.72) 

Age in months 1.26** 0.51 -0.067 0.18 1.30** 0.60 0.0079 0.69 

 (0.53) (0.45) (0.30) (1.10) (0.56) (0.41) (0.30) (0.87) 

Height-for-age z-score (2009) 9.31*** 5.38** 5.22** 7.14*** 5.30** 4.79** 4.82** 4.81*** 

 (2.64) (2.21) (1.92) (1.78) (2.33) (1.85) (1.73) (1.56) 

Wealth index (2006) 151*** 53.6** 17.6* 78.3*** 105*** 31.0* 18.1* 59.0*** 

 (25.9) (23.8) (8.80) (20.9) (18.8) (17.8) (8.91) (19.0) 

Time use (hours on a typical day) 

doing domestic tasks     2.23 3.06 6.72*** -4.16 

     (3.37) (4.21) (1.95) (3.89) 

doing tasks on family farm etc.     1.41 -13.6*** 0.12 -21.4*** 

     (3.44) (3.39) (1.61) (5.34) 

doing paid work outside HH     -3.94 22.3*** -4.05 -2.56 

     (7.86) (7.50) (3.84) (7.02) 

at school     12.1*** 21.2*** 8.94*** 3.78 

     (3.36) (2.54) (2.90) (4.09) 

studying outside of school time     13.8*** 17.7*** 6.77*** 2.03 

     (3.72) (4.88) (1.71) (3.09) 

general leisure etc.     2.12 4.53* 2.40* -2.64 

     (3.24) (2.52) (1.31) (2.59) 

caring for others     3.29 1.74 1.96* -7.01 

     (4.65) (4.70) (1.05) (4.77) 

Lagged CDA scores (2006) 0.067*** 0.13*** 0.100*** 0.065* 0.045* 0.12*** 0.100*** 0.049 

 (0.023) (0.027) (0.021) (0.032) (0.022) (0.027) (0.020) (0.030) 

Constant 196*** 306*** 401*** 354*** 129* 97.6* 313*** 333*** 

 (49.2) (45.5) (29.5) (74.1) (72.0) (53.8) (38.8) (65.5) 

Observations 1,835 1,892 1,888 1,907 1,834 1,892 1,881 1,858 

R-squared 0.340 0.276 0.343 0.437 0.410 0.365 0.370 0.458 

Robust standard errors in parentheses. Standard errors are clustered at site level. *** p<0.01, ** p<0.05, * p<0.1 

Test scores are IRT scores normalised to have a mean of 500 and SD of 100 in the pooled four-country sample at each age. 

I present the estimated production function estimates for an additional grade completed in 
each country in Table 10 for the younger cohort. The results for younger children are striking: 

the learning increment per additional grade completed is much larger in the Vietnamese 
sample than in the Indian sample, a conclusion that is unchanged whether or not time use 
categories are included. These differences are statistically significant and the learning 

increment per year in Vietnam is significantly greater than the increment in any of the other 
countries.  
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Does incorporating the differential effectiveness of schooling in the four country samples 

enable us to account for a larger proportion of the divergence between countries? The 
important pattern to note is that the inclusion of grades completed has removed the higher 

maturation effect (coefficient on age) in Vietnam in comparison to other countries: the pattern 
noted earlier, that Vietnamese children seemed to be learning more than in the other 
countries, disappears upon including grades completed and allowing for differential 

effectiveness. The contribution of differential effectiveness of grades completed to the 
divergence in test scores is large: for example, raising the effectiveness of a grade of 
schooling to Vietnamese levels, even keeping all endowments (including learning at 5) as 

well as all other coefficients unchanged, closes the gap between India and Vietnam by about 
70% and between Peru and Vietnam entirely.25  

Results for the older cohort (Table 11) are mixed and stand in contrast to the results at 8 

years of age: in particular, the progress in Vietnam appears lower than in other countries.26 A 

likely possibility which could account for this anomalous finding is that as children move to 
secondary school, the focus of math training moves away from arithmetic and basic 
geometry (the focus of the testing in Young Lives) to more challenging topics such as 

trigonometry, probability and calculus which are not assessed here; if such a movement is 
more pronounced in Vietnam than elsewhere, or if Vietnamese children had already 
substantially mastered the range of skills tested by the age of 12, it is possible that we do not 

see much progress at all on the available test metric.27  

The important point to stress regarding the divergence between 12 to 15 years is that the 

differential productivity of schooling, which is the most salient contemporaneous policy 
variable among the inputs in the production function, does not account for the divergence 

between country samples. 
  

 
 
25  Ethiopia is somewhat an exception since both the level and productivity of grades completed are lower than Vietnam. Here 

also, if the sample had the same amount of schooling and grade productivity as Vietnam, it would close about 60% of the gap 
between the two countries. 

26  This pattern is not entirely robust. In specifications which include time use categories, the coefficient on highest grade 
schooling in Vietnam is not significantly different from India or Peru.  This is surprising and contrasts with all the previous 

patterns highlighted in the data. 

27  Note that at 15 years of age the coefficient in Ethiopia is invariably larger than the coefficient in the other countries both with 
and without time use; this difference is statistically significant from Vietnam in both specifications and from India in the 

specification with time use. Combined with the fact that the median grade for this age group in the Ethiopian sample is Grade 
7 while in the Indian and Vietnamese samples is Grade 10, this could be indicative that the skills tested by the Young Lives 

assessment are mostly produced at lower grade levels. 
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Table 11 Comparing effectiveness of a grade of schooling: 15-years old 

VARIABLES (1) (2) (3) (4) (5) (6) (7) (8) 

Dep var: Mathematics score (2009) 

Without time use With time use 

Ethiopia India Peru Vietnam Ethiopia India Peru Vietnam 

Highest grade completed 21.7*** 19.9*** 17.8*** 12.2*** 19.1*** 13.1*** 15.1*** 10.3*** 

 (2.14) (1.72) (3.48) (2.67) (2.31) (1.37) (3.09) (2.77) 

Male 25.8*** 22.0*** -1.57 -5.77 26.9*** 18.8*** 0.75 -2.59 

 (6.96) (4.57) (3.59) (4.34) (6.02) (6.08) (3.69) (4.07) 

Eldest -0.74 3.38 3.62 3.19 -1.62 4.24 4.24 0.67 

 (7.91) (3.68) (2.70) (3.60) (7.50) (3.95) (2.92) (3.61) 

Caregiver's education level -1.32* 2.01*** 0.62* 2.43** -1.30* 1.02* 0.51 1.88** 

 (0.71) (0.55) (0.34) (0.91) (0.72) (0.54) (0.29) (0.86) 

Age in months -0.49 -1.30** -0.98* -1.02 -0.36 -0.57 -0.74* -0.35 

 (0.90) (0.53) (0.47) (0.82) (0.89) (0.56) (0.39) (0.83) 

Height-for-age z-score (2009) 1.11 -0.61 1.90 3.48 1.09 0.54 2.23 3.47 

 (2.89) (2.81) (2.10) (2.79) (2.76) (2.78) (2.01) (2.88) 

Wealth index (2006) 76.8*** 34.2* 6.09 68.2*** 65.2** 25.2 3.85 56.5** 

 (24.7) (18.7) (8.04) (23.7) (23.9) (16.8) (7.88) (23.3) 

Time use (hours on a typical day) 

doing domestic tasks     4.30 2.88 2.52 1.39 

     (3.21) (2.80) (1.61) (3.72) 

doing tasks on family farm etc.     4.07 -2.43 0.61 -0.57 

     (3.35) (2.41) (1.60) (2.58) 

doing paid work outside HH     4.09 -3.29 2.49 -0.19 

     (3.31) (2.05) (1.90) (1.67) 

at school     8.16** 3.38 5.29*** 4.84 

     (3.06) (2.31) (1.66) (2.94) 

studying outside of school time     10.5*** 6.08*** 3.13** 0.60 

     (2.87) (2.01) (1.16) (2.08) 

general leisure etc.     5.52 -0.067 1.65 -1.46 

     (3.63) (1.70) (1.19) (2.10) 

caring for others     7.13* -9.65** 1.16 -2.86 

     (3.63) (4.07) (0.96) (4.05) 

Lagged math scores (2006) 0.34*** 0.34*** 0.14*** 0.23*** 0.33*** 0.31*** 0.14*** 0.20*** 

 (0.046) (0.051) (0.019) (0.029) (0.046) (0.041) (0.016) (0.030) 

Constant 227 349*** 491*** 474*** 122 267** 424*** 375** 

 (167) (96.2) (73.7) (133) (163) (114) (55.8) (135) 

Observations 964 970 656 964 963 969 656 925 

R-squared 0.427 0.482 0.454 0.408 0.443 0.533 0.486 0.435 

Robust standard errors in parentheses. Standard errors are clustered at site level. *** p<0.01, ** p<0.05, * p<0.1 

Test scores are IRT scores normalised to have a mean of 500 and SD of 100 in the pooled four-country sample at each age. 
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4.4 Are VA estimates reliable? Comparison with IV estimates 

As noted above, value-added models are based on the identifying assumption that the 

lagged test score suffices to proxy for any relevant sources of bias in the interpretation of 
input coefficients in the production function estimates. Such concerns, relating to possible 

endogeneity of inputs, are particularly salient for grades completed in school. Within-country 
variation in this variable comes from three possible sources: the age of starting school, 
retention in particular grades due to lack of academic progress, and early (or intermittent) 

dropping out. The importance of these sources differs across the educational trajectory: 
whereas differences in the age of starting school account for the bulk of the variation at 
younger ages, by the age of 15 grade repetition and drop-out (both of which may plausibly be 

caused by low academic achievement) are both more relevant. If the factors that determine 
these three channels are effectively proxied by lagged achievement, the estimates can be 
interpreted causally but not otherwise. In this section, I estimate causal impacts of a grade of 

schooling based on plausibly exogenous variation arising from enrolment guidelines and 
assess if any conclusions are substantively changed.  

My strategy for estimating causal effects of additional grades completed uses variation in 

when children joined school, arising from their month of birth and the enrolment guidelines of 
particular countries, to instrument grades completed in the VA specifications presented in 

Table 9. 

Figure 4 Discontinuity in grade attained - mean grade attained by 2009 (by month of 
birth) 
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Figure 4 presents the average number of grades completed by children born in different 

months in the sample in each country. As can be seen there is a discontinuity in Vietnam 
between Dec 2001-Jan 2002 and a somewhat fuzzier discontinuity in Peru between Jul-Aug 

2001; these also represent the official guidelines for enrolment of children into first grade in 
these two countries (highlighted by red reference lines).28  

The instrumentation strategy implies a first-stage equation of the form: 

   
gradesi ,2009 = μ +γ1.Thresholdi +γ2.Xi +γ3.sitei +ε  (7)

where Threshold is defined as an indicator variable equalling 1 if born after July 2001 in Peru 
or after Dec 2001 in Vietnam and 0 otherwise. X is the vector of controls listed in previous 

specifications and includes the child's age in months. The second stage, instrumenting 
grades completed with Thresholdi, is given by the following equation which is identical to Eqs. 
(5) and (6) but for additionally including site fixed effects (sitei )within country in order to 

absorb any differences across sites in the implementation of enrolment guidelines.29   

   
Yic,a =αc + β1.Yic,a−1+ β2.Xic + β3.gradeica +γ.sitei +εica  (8) 

  +β4.TUica  (9) 

Results from the estimation are presented in Table 12. As can be seen, in both Peru and 

Vietnam, the coefficients on grades completed are similar to, if somewhat smaller than, the 
coefficients obtained from the OLS VA models in Table 9 and coefficients on most other 

variables are also unchanged.30 In both countries, the OLS VA coefficients lie within the 95% 
confidence intervals of the IV estimates and I cannot formally reject equality of estimates. 
More pertinently from our perspective, the differences indicated between the productivity of a 

year of schooling in Peru and Vietnam are also unchanged. In short, the VA models do not 
appear to be biased in these two samples.31 
  

 
 
28  Guidelines for enrolment in Grade 1 in Peru in the 2007 academic year state that children should have completed 6 years of 

age by 31 July 2007, thus generating the discontinuity. In Vietnam, guidelines stipulate that the child should be enrolled in 
school in the calendar year that he/she turns six years of age, thus generating a discontinuity in grades completed between 

children born in December and January. 

 While there are similar guidelines in India as well, requiring in Andhra Pradesh all children to have turned 5 by 1 Sept of the year in 
which admission is sought, the discontinuity created is much less sharp and seems inadequate in statistical power to be used as 

an IV by this point of the children's trajectory. Using this discontinuity, I obtain very imprecise estimates, which are not statistically 
distinguishable from the OLS (VA) estimates, from zero, or from the coefficients of any of the other countries, thus not allowing for 

any firm conclusions to be drawn; a similar conclusion is also borne by using Dec 01-Jan 02 as the relevant threshold, as used by 

Singh et al. (2014). There is also no evidence of such discontinuities that can be used in Ethiopia. 

29  The inclusion of site fixed effects is appropriate in this setting since we are not comparing the constant terms across countries 
(unlike in previous subsections). It is useful to note, however, that it does not notably alter our conclusions even if site fixed 

effects are excluded from the IV specifications: the core result, of the coefficient in Vietnam being considerably higher than in 

Peru is unchanged. One important difference is that in the absence of site fixed effects, the coefficient on a year of schooling 
in Peru is no longer statistically distinguishable from zero. 

30  In interpreting the IV estimates, it should be remembered that these are Local Average Treatment Effects identified over the 
compliers who are prompted to join school as a result of the discontinuity. If the effects of grade effectiveness are 

heterogeneous, with the youngest children in class gaining less than their older peers, a decline in the coefficient does not 

necessarily indicate bias. This is, however, a point of marginal concern in this particular instance since the OLS VA estimates 
and the IV estimates are not statistically different and the pattern across countries is entirely unchanged. 

31  While this is not direct evidence supporting the validity of VA estimates in Ethiopia and India, it is suggestive that the 
production function estimates are reliable. Unfortunately, these discontinuities seem to lack explanatory power in the first-stage 

at the age of 15 years. So I cannot similarly test the validity of the VA estimates for the older cohort. 
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Table 12 Discontinuity-based results on grade effectiveness in Peru and Vietnam 

VARIABLES (1) (2) (3) (4) 

Dep var: Math scores (2009) 

Peru Vietnam 

Highest grade completed 20.1*** 20.9*** 47.3*** 46.3*** 

 (7.61) (7.96) (7.49) (7.16) 

Male 9.43*** 9.96*** 1.34 1.56 

 (2.39) (2.63) (2.36) (2.46) 

Eldest 8.04*** 6.44** 5.14 6.36** 

 (2.74) (3.01) (3.16) (3.05) 

Caregiver's education level 2.31*** 2.14*** 3.05*** 2.41*** 

 (0.40) (0.37) (0.61) (0.55) 

Age in months 0.94 0.87 0.41 0.64 

 (0.66) (0.71) (0.57) (0.53) 

Height-for-age z-score (2009) 6.15*** 5.59*** 6.00*** 4.18*** 

 (2.20) (2.00) (1.96) (1.44) 

Wealth index (2006) 29.7*** 29.0*** 40.2** 28.6** 

 (7.67) (7.84) (16.2) (13.4) 

Time use (hours on a typical day)     

doing domestic tasks  4.99***  -3.37 

  (1.71)  (4.40) 

doing tasks on family farm etc.  -0.13  -15.1*** 

  (2.20)  (4.86) 

doing paid work outside HH  0.42  -2.32 

  (4.20)  (6.37) 

at school  8.45***  7.79 

  (2.88)  (4.89) 

studying outside school time  6.72***  9.54*** 

  (1.54)  (2.73) 

general leisure etc.  0.95  0.18 

  (1.16)  (1.77) 

caring for others  2.08**  -4.37 

  (0.96)  (4.07) 

Lagged math scores (2006) 0.13*** 0.12*** 0.11*** 0.088*** 

 (0.020) (0.020) (0.031) (0.027) 

Constant 290*** 227*** 375*** 316*** 

 (58.2) (69.2) (55.5) (60.2) 

Observations 1,888 1,881 1,907 1,858 

R-squared 0.366 0.393 0.481 0.504 

Kleibergen-Paap F-statistic 108 110 113 152 

Robust standard errors in parentheses. Standard errors are clustered at site level. *** p0.01, ** p0.05, * p0.1 

Test scores are IRT scores normalized to have a mean of 500 and SD of 100 in the pooled four-country sample at each age. 
Estimation includes a vector of site fixed effects, coefficients for which are not reported. 

Highest grade completed is treated as endogenous in this table and instrumented for using in each country a discontinuity arising 
from enrolment thresholds and month of birth. 

4.5 Robustness checks 

 Flexible lag structure 

In the analysis thus far dynamics have been modelled linearly with the lagged achievement 

measure entering the regression specifications in levels. If growth trajectories of achievement 
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are in fact non-linear, value-added estimates may suffer from a misspecification bias. In order 
to test for this possibility, I re-estimated the production function using a third-order polynomial 
of the lagged test score instead of the lag in levels, following the practice in Chetty et al. 

(forthcoming).  

Results from this exercise are reported in Appendix 2. In the 8-year sample, parameters on 

coefficients on background covariates, time use and grades completed are not significantly 
altered, indicating that our key results are unchanged. In the 15-year old sample, there are 

some differences in the coefficient on grades of schooling which declines in India and Peru 
but the main comparative conclusions about rates of progress across countries (or the 
contribution of different factors to divergence between 12 and 15 years of age) are not 

changed. 

 Bias due to censoring in the lagged achievement score for 15-year 
olds 

As noted in Section 2 and 3, there are non-trivial ceiling and floor effects in the 12-year old 

maths test, leading to a censoring of the true achievement distribution. Recent work by 
Rigobon and Stoker (2007, 2009) demonstrates that such censoring in regressors can cause 

bias in estimates; given that the severity of the censoring varies across the four country 
samples, it is possible that different degrees of bias could exist and affect the comparative 
results in this paper for 15-year olds. 

To test the empirical relevance of this bias, I use Bayesian expected a posteriori (EAP) IRT 

scores from the 12-year old assessment instead of maximum likelihood estimates of ability 
as the lagged achievement measure and rerun the estimation reported in Table 11. EAP 
scores utilize information from a prior distribution of ability along with the log likelihood and 

are less affected by censoring issues.32 The resulting estimates are presented in Appendix 3. 
As may be noted, although the coefficients on the lagged achievement measure rise 
markedly in both Vietnam and India (which were most affected by censoring) most input 

parameters, including most importantly the coefficient on grade completed, are unchanged 
indicating that our conclusions continue to hold. Notably, the coefficient on lagged 
achievement looks considerably more similar across countries correcting for the censoring 

than in Tables 8 and 11. 

 Measurement error in lagged achievement 

Test scores are noisy measures of (latent) academic knowledge. This measurement error in 
lagged achievement can cause bias in the estimated production function parameters. In 

order to test for this possibility in the younger cohort, I instrumented the lagged quantitative 
achievement measure (CDA at age 5) with the scores of the child in a test of receptive 
vocabulary that was taken at the same time.33 Informativeness of the IV rests on the 

correlation between different domains of cognitive achievement and first-stage results are 

 
 
32  Please see Das and Zajonc (2010) for an explanation of technical details of Bayesian EAP estimation of IRT models.   

33  Since the vocabulary tests are administered in different languages, with corresponding differences in difficulty, I cannot 
directly compare them across countries. However, I can use them as instruments, utilizing the (within-country) correlation 

between math and vocabulary scores.   
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strong. The validity of the IV rests on the assumption that the measurement error in the two 
tests, conducted at the same time, is independent of each other.34  

Results are reported in Appendix 4. In this sample, coefficients on the grade of schooling and 

other inputs are not materially affected. Coefficients on the lagged achievement measure rise 

significantly in Ethiopia and Peru, consistent with attenuation bias due to measurement error 
in lagged achievement, but remain statistically indistinguishable from OLS results in India 
and Vietnam. The substantive results regarding the differential effectiveness of a grade of 

schooling in different countries and its contribution to divergence in achievement are not 
affected. 

Overall, the range of robustness checks indicate that while there may be uncertainty 

regarding the ‘true’ value of the persistence parameter due to measurement error in the 

lagged measure, and the functional form in which it enters the estimation, it does not seem to 
change the main conclusions that are drawn in the paper from the various specifications: 
there is divergence in both age groups even conditional on test scores and it is explained by 

differential grade productivity in primary school between 5-8 years of age but not in the older 
cohort between 12-15 years. 

5. Conclusions 
In this paper I have characterized the emergence and evolution of test score gaps in 

quantitative ability across using panel data on two cohorts of children in Ethiopia, India, Peru 
and Vietnam. Furthermore, I have decomposed the divergence of test scores between 5-8 
years of age and between 12-15 years of age into various proximate sources.  

Several results stand out. Achievement levels in three of the four countries are very low by 
international standards. Gaps between countries open up early and show evidence of 

increasing over the educational trajectory, thus preserving the ordering of country samples 
apparent at the age of 5 years. Estimates from value-added models indicate that this 
divergence is not wholly (or even mostly) accounted for by differences in child-specific and 

home endowments, although results suggest that differences in early investments (embodied 
in test scores prior to school entry) have long-lasting effects: there is significant difference in 
the exposure to and effectiveness of schooling in the four samples which accounts for an 

important portion of the gap, especially at primary level. Results from VAMs seem unbiased 
based on comparison with IV estimates for 8-year old children in Peru and Vietnam.  

It is important that the differences in the levels of test scores at 8 years are accounted for 

almost entirely by the difference in the quality of schooling across countries: this matters 

particularly because school-based learning may be easier for policy to directly influence than 
(potentially unobserved) investments into children at home. This also provides a clear link 
between this paper and the vast literature on such interventions in developing countries (see 

e.g. Glewwe and Kremer 2006, Kremer et al. 2013 and McEwan 2013); while I document that 

 
 
34  This is a strong assumption which rules out correlated shocks between different test outcomes, for example measurement 

error due to testing conditions on the day of assessment, but is often used in this literature to correct for measurement error. 

 This exclusion restriction is not maintainable in the older cohort due to the censoring of lagged achievement. Since the 
censoring of lagged achievement necessarily implies that measurement error is correlated with ability, an independent 

measure of ability (such as the vocabulary test) cannot be a valid IV for the lagged achievement. 
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school productivity is an important source of divergence and thereby imply the need for 
educational interventions, the impact evaluation literature rigorously identifies the tools by 
which learning gains per year may be enhanced in a variety of contexts. The persistence of 

gaps between the ages of 12 and 15 seems likely to be a product of investments made prior 
to 12 years i.e investments in early childhood and primary school.35  

The analysis attempts also to show how linked panel data across countries could greatly aid 

the understanding of learning gaps across countries. Even though international testing 

programs like PISA and TIMSS are steadily increasing their coverage to also cover 
developing countries, as I show much of the divergence in test scores happens before the 
points in the educational trajectories of children where they are tested by international 

assessments; comparable child-level panel data could substantially complement the findings 
of these large representative international assessments and also guard against selection on 
enrolment and attendance in the estimates which is likely to be an important concern in 

developing countries. This may also provide a more robust basis for the comparison of 
learning quality across countries than estimates based on the earnings of migrants to the US 
as problems of differential selection across countries of origin are likely to make individual 

country estimates unreliable.36  

Finally, it should be noted that the results tell us the difference in the average productivity of 

each completed grade in the different countries but not the sources of this differential 
productivity at the school level. This is an obvious area for further investigation. 

  

 
 
35  In some respects these findings are similar to structural analyses in the US but applied here to a comparative cross-country 

setting. See, for example, Cameron and Heckman (2001) and Keane and Wolpin (2001) who report that relaxing credit 
constraints at the age of 16 years does not achieve much in increasing college enrolments and that most differences in 

enrolment decisions seemed to predate from background factors and childhood investments. 

36  For example, the estimates of schooling quality used in Schoellman (2012) suggest that India has substantially better 
education than Vietnam. This is contrary both to test scores on international assessments and to findings in this paper. 

Plausibly, this could reflect differential selection of migrants given that Indian migrants to the US tend to be highly skilled 
whereas a large number of Vietnamese refugees (who were not selected on realized human capital) were settled into the US in 

the aftermath of the Vietnam war. 
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Appendix 1 Construction of Test Scores 

 Introduction to Item Response Theory 

Test scores used in this paper are constructed using Item Response Theory (IRT) models. 

IRT models, used commonly in international assessments such as PISA and TIMSS, posit a 
relationship between a unidimensional latent ability parameter and the probability of 
answering a question correctly; it is assumed that the relationship is specific to the item but is 

constant across individuals. Further assuming local independence, conditional on ability, 
between answers to different items by the same person, and across persons for the same 
item, it is possible to write down the likelihood function for observing the full matrix of 

responses, given individual-specific ability parameters and item-specific characteristics; 
these parameters can then be recovered based on standard maximum likelihood techniques 
which provide unbiased estimates of individual ability.  

In this paper, following the procedure in TIMSS, I use the three-parameter logistic (3PL) 

model for all multiple-choice questions and the 2-PL model for items allowing open-ended 
responses. The 3-PL model is given by the following functional form: 

  

Pg Xig =1|θ i( ) = cg +
1−cg

1+exp[−1.7.ag. θ i − bg( )

where the probability of an individual   with ability  being able to correctly answer question 

  is given by three item-specific parameters: the difficulty parameter  , the discrimination 
parameter  and the pseudo-guessing parameter  which accounts for the fact that with 

multiple-choice-questions even the lowest ability individual may sometimes correctly guess 
an answer. For the 2-PL model  is set to zero in which case the difficulty parameter  is 
the level of ability at which half the tested individulas would answer the question correctly.  

This relationship can be depicted by plotting the relationship graphically to generate the Item 

Characteristic Curve (ICC), an example of which is presented in Figure A1.1. 
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Figure A1.1 Item Characteristic Curve 

 

 

I used the OpenIRT suite of commands in Stata written by Tristan Zajonc to generate test 

scores used in this papers; specifically, I use the maximum likelihood estimates of ability for 
all children.37  

 Testing for Differential Item Functioning 

A crucial assumption underlying the use of IRT models is the absence of differential item 

functioning (DIF) i.e. item-specific parameters do not differ across individuals. In our 

application, this implies that the relationship between child ability and the probability of 
correctly answering a question does not differ between, say, children in Ethiopia and 
Vietnam. This can be a strong assumption and rules out, for example, problems due to 

translation of questionnaires or culture-specific framing of questions.  

In order to test for the violation of the no-DIF assumption, for each item in every round of 

assessment, I plotted the Item Characteristic Curve based on the estimated parameters 
which predicts the proportion of individuals at any given ability level who will answer correctly 
and overlaid it with the observed proportion correct of answers at those ability levels in each 

country to assess if there were visible differences in Item functioning across country samples. 
For most items, there was no indication of DIF across countries; where any indication of DIF 
was visible, the item was `split' in the relevant country sample i.e. treated as a separate item 

in the estimation of parameters and not linked to the other country samples and the IRT 
scores were re-estimated, following which the same procedure was repeated till no visible 
indications of DIF were seen. In rare cases, the probability of success did not seem to be 

 
 
37 Maximum Likelihood Estimates suffer from the problem that, while they provide unbiased estimates of the level of achievement, 

they overstate the variance. It is possible to use `plausible values' estimation as used by TIMSS to generate more precise 

estimates of the distribution of the achievement through multiple imputation, as is done by TIMSS. However, these estimates 
are not unbiased estimates of individual ability and therefore cannot be used in the estimation of value-added models in the 

paper. For more details on Plausible Values methodology, please consult Mullis et al. (2004). 
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increasing monotonically with ability (as is implied by the ICC in the estimation); these items 
were removed from the estimation. 

Table A1.1  List of Items which were split in estimation due to DIF 

Age sample Item no. Countries in which modified 

5-years (CDA, 15 Items) 1 Ethiopia (D), India (S), Peru (D) 

 3 Vietnam (S) 

 6 India (S), Peru (D), Vietnam (D) 

 7 Deleted in all countries 

 9 Vietnam (S) 

8-years (Math, 29 items) 7 Vietnam (S) 

 8 Peru (S), Vietnam (S) 

 9 India (S), Peru (S) 

 10 Peru (S) 

 15 Peru (S) 

 17 Vietnam (S) 

 18 Peru (S) 

 20 Peru (S) 

 28 India (S) 

12-years (Math, 10 items) 7 Ethiopia (S), Vietnam (S) 

 8 India (S) 

 9 India (S), Vietnam (S) 

15-years (Math, 30 items) 12 India (S) 

 14 India (S) 

 21 India (S), Peru (S), Vietnam (S) 

 22 Ethiopia (S) 

 23 Ethiopia (S), India (S) 

 26 Ethiopia (S), India (S) 

 27 Ethiopia (S) 

  28 Ethiopia (S) 

(D) Item deleted; (S) Item split. 

Table A1.1 lists the items which were split following the procedures above in each of the 

samples and countries. Figure A1.2 presents two examples of such diagnostic graphs: as is 
evident, the Item in Panel A does not show any evidence of DIF whereas the Item in Panel B 
shows distinct evidence of DIF in India.38 
  

 
 
38  Note that DIF in India also causes a poorer fit to the ICC in the other countries in panel B. This is noticeably improved after 

separating this question in India from the others in the estimation. 
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Figure A1.2  Detecting Differential Item Functioning (DIF) 

 (a) No evidence of DIF 

 

 (b) Evidence of DIF 
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Appendix 2 Production Functions with 
flexible lag specifications 

Table A2.1  Allowing non-linearity in lagged achievement: 8-years old 

VARIABLES (1) (2) (3) (4) (5) (6) (7) (8) 

Dep var: Mathematics score (2009) 

Without time use With time use 

Ethiopia India Peru Vietnam Ethiopia India Peru Vietnam 

Male 2.89 12.5*** 8.72*** 1.43 4.15 11.3*** 8.89*** 1.45 

 (5.52) (3.08) (2.28) (2.36) (4.84) (3.14) (2.51) (2.58) 

Eldest 4.10 5.19* 8.32*** 6.55** 1.70 4.18 7.08** 7.23** 

 (3.96) (2.50) (2.81) (2.96) (3.69) (2.90) (3.01) (3.17) 

Caregiver's education level 3.65*** 2.36*** 2.24*** 3.06*** 2.70*** 1.82*** 2.13*** 2.17*** 

 (0.62) (0.70) (0.50) (0.77) (0.51) (0.49) (0.48) (0.71) 

Age in months 1.13** 0.41 -0.23 0.15 1.23** 0.52 -0.15 0.67 

 (0.50) (0.47) (0.33) (1.11) (0.54) (0.43) (0.31) (0.88) 

Height-for-age (2009) 8.79*** 5.42** 4.99** 7.02*** 5.02** 4.80** 4.62** 4.65*** 

 (2.59) (2.19) (1.84) (1.71) (2.31) (1.83) (1.65) (1.50) 

Wealth index (2006) 148*** 52.3** 14.4 73.8*** 103*** 30.0 15.3 56.4*** 

 (25.5) (23.8) (8.91) (20.4) (18.6) (17.7) (9.00) (18.8) 

Time use (hours on a typical day) 

doing domestic tasks     2.15 3.04 7.07*** -3.84 

     (3.34) (4.16) (1.96) (4.06) 

doing tasks on family farm 
etc. 

    1.43 -13.6*** 0.23 -21.3*** 

    (3.44) (3.52) (1.68) (5.28) 

doing paid work outside HH     -3.57 22.1*** -5.39 -1.85 

    (7.88) (7.17) (3.86) (7.48) 

at school     11.9*** 21.2*** 8.93*** 3.80 

     (3.33) (2.53) (2.81) (4.09) 

studying outside of school 
time 

    13.8*** 17.7*** 6.38*** 2.04 

    (3.71) (4.80) (1.72) (3.06) 

general leisure etc.     2.05 4.68* 2.36* -2.47 

     (3.23) (2.49) (1.27) (2.57) 

caring for others     3.30 1.63 1.80 -7.02 

     (4.69) (4.71) (1.06) (4.80) 

Highest grade completed 40.6*** 27.1*** 33.4*** 60.0*** 28.3*** 25.1*** 32.5*** 54.8*** 

 (4.74) (2.08) (3.72) (14.5) (4.56) (1.64) (3.65) (10.9) 

Lagged test score -0.89** -0.43 0.32 -1.08** -0.54 -0.43* 0.31 -1.08** 

 (0.40) (0.27) (0.43) (0.39) (0.34) (0.24) (0.39) (0.39) 

Lagged score, squared 0.0020** 0.0013** -0.000041 0.0024*** 0.0012* 0.0012*** -0.000022 0.0022*** 

 (0.00081) (0.00048) (0.00071) (0.00070) (0.00070) (0.00043) (0.00064) (0.00075) 

Lagged score, cubed -1.23e-06** -9.16e-07*** -1.80e-07 -1.54e-06*** -8.02e-07* -8.49e-07*** -1.87e-07 -1.36e-06*** 

 (5.19e-07) (2.77e-07) (3.87e-07) (4.14e-07) (4.48e-07) (2.60e-07) (3.53e-07) (4.59e-07) 

Constant 349*** 385*** 342*** 532*** 220*** 177** 257*** 520*** 

 (58.7) (69.7) (78.7) (97.7) (63.6) (67.1) (74.2) (100) 

Observations 1,835 1,892 1,888 1,907 1,834 1,892 1,881 1,858 

R-squared 0.343 0.280 0.355 0.441 0.411 0.368 0.381 0.461 

Robust standard errors in parentheses. Standard errors are clustered at site level. *** p<0.01, ** p<0.05, * p<0.1. Test scores are IRT scores normalised 
to have a mean of 500 and SD of 100 in the pooled four-country sample at each age.  

Coefficients should be compared to Table 10 which is the analogous specification entering lagged achievement linearly. 
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Table A2.2  Allowing non-linearity in lagged achievement: 15-years old 

VARIABLES (1) (2) (3) (4) (5) (6) (7) (8) 

Dep var: Mathematics score (2009) 

Without time use With time use 

Ethiopia India Peru Vietnam Ethiopia India Peru Vietnam 

Male 24.6*** 21.9*** -4.39 -6.01 26.4*** 18.8*** -2.16 -3.08 

 (7.06) (3.24) (3.35) (4.24) (6.35) (4.67) (3.52) (4.00) 

Eldest -1.54 2.82 2.70 2.62 -2.47 3.60 3.55 0.61 

 (7.59) (3.72) (2.93) (3.49) (7.20) (4.01) (3.08) (3.60) 

Caregiver's education 
level 

-1.17* 2.00*** 0.70** 2.17** -1.17* 1.16** 0.59** 1.72** 

(0.65) (0.49) (0.28) (0.87) (0.66) (0.54) (0.26) (0.82) 

Age in months -0.33 -0.35 -0.65* -0.93 -0.19 0.18 -0.41 -0.29 

 (0.90) (0.46) (0.36) (0.79) (0.89) (0.46) (0.29) (0.79) 

Height-for-age (2009) 1.60 -0.027 1.69 2.39 1.60 0.78 2.18 2.63 

 (2.89) (2.64) (1.68) (2.63) (2.78) (2.54) (1.65) (2.81) 

Wealth index (2006) 67.9** 35.2** -5.67 63.0** 55.4** 27.5* -8.87 53.1** 

 (23.9) (15.4) (7.92) (23.5) (22.8) (15.3) (7.77) (23.1) 

Time use (hours on a typical day) 

doing domestic tasks     4.56 3.08 2.00 1.17 

     (3.18) (2.35) (1.32) (3.52) 

doing tasks on family 
farm etc. 

    3.99 -1.00 1.25 0.0012 

    (3.40) (1.98) (1.51) (2.32) 

doing paid work outside 
HH 

    4.11 -1.52 1.44 -0.19 

    (3.37) (1.65) (1.81) (1.63) 

at school     8.51** 3.60* 4.64*** 4.58 

     (3.17) (1.84) (1.33) (2.81) 

studying outside of 
school time 

    10.7*** 5.73*** 3.48*** 1.02 

    (2.67) (1.95) (1.03) (2.03) 

general leisure etc.     6.00 0.14 1.54 -1.20 

     (3.61) (1.46) (1.20) (2.15) 

caring for others     7.99** -8.84** 0.0050 -2.58 

     (3.71) (4.02) (1.13) (3.71) 

Highest grade 
completed 

18.8*** 12.4*** 11.4*** 9.75*** 16.0*** 7.41*** 8.83*** 8.22*** 

(2.23) (1.98) (2.65) (2.16) (2.44) (1.36) (2.50) (2.25) 

Lagged test score -6.96*** -3.27* 0.90 -2.14 -7.11*** -2.65 0.60 -0.71 

 (1.84) (1.76) (2.06) (3.77) (1.97) (1.60) (2.09) (3.49) 

Lagged score, squared 0.017*** 0.010*** 0.00099 0.0068 0.017*** 0.0089** 0.0016 0.0035 

 (0.0038) (0.0036) (0.0039) (0.0075) (0.0040) (0.0033) (0.0039) (0.0069) 

Lagged score, cubed -0.000012*** -8.48e-06*** -1.90e-06 -5.37e-06 -0.000012*** -7.30e-06*** -2.28e-06 -3.06e-06 

 (2.49e-06) (2.40e-06) (2.44e-06) (4.88e-06) (2.66e-06) (2.21e-06) (2.44e-06) (4.45e-06) 

Constant 1,215*** 517* 118 655 1,120*** 373 99.5 358 

 (343) (287) (356) (631) (340) (277) (361) (568) 

Observations 964 970 656 964 963 969 656 925 

R-squared 0.445 0.563 0.547 0.437 0.462 0.599 0.575 0.456 

Robust standard errors in parentheses. Standard errors are clustered at site level. *** p<0.01, ** p<0.05, * p<0.1. Test scores are IRT scores normalised 
to have a mean of 500 and SD of 100 in the pooled four-country sample at each age.  

Coefficients should be compared to Table 11 which is the analogous specification entering lagged achievement linearly 
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Appendix 3 Robustness of estimates at 15 to 
censoring of achievement at age 12 

Table A3.1  Production function estimates at 15-years using Bayesian EAP lagged scores 

VARIABLES (1) (2) (3) (4) (5) (6) (7) (8) 

Dep var: Mathematics score (2009) 

Without time use With time use 

Ethiopia India Peru Vietnam Ethiopia India Peru Vietnam 

Highest grade 
completed 

19.6*** 16.8*** 15.3*** 10.5*** 16.9*** 10.9*** 12.6*** 9.01*** 

(2.06) (1.68) (3.32) (2.26) (2.31) (1.24) (2.95) (2.45) 

Male 24.4*** 20.9*** -3.32 -5.43 26.1*** 18.4*** -1.13 -2.68 

 (7.02) (4.27) (3.69) (4.30) (6.24) (5.77) (3.74) (3.93) 

Eldest -1.48 2.25 2.70 2.38 -2.44 3.25 3.37 0.17 

 (7.68) (3.49) (2.68) (3.38) (7.32) (3.70) (2.95) (3.46) 

Caregiver's education 
level 

-1.34* 1.70*** 0.51 2.03** -1.34* 0.86 0.40 1.62* 

(0.67) (0.50) (0.35) (0.88) (0.69) (0.51) (0.31) (0.83) 

Age in months -0.39 -0.98* -0.80* -1.07 -0.26 -0.36 -0.56 -0.45 

 (0.90) (0.49) (0.42) (0.81) (0.88) (0.51) (0.33) (0.81) 

Height-for-age (2009) 1.62 -0.50 1.38 2.39 1.61 0.49 1.72 2.61 

 (2.87) (2.55) (2.09) (2.59) (2.76) (2.48) (1.99) (2.76) 

Wealth index (2006) 69.1*** 32.6* -3.92 62.9** 57.0** 24.9 -6.05 53.5** 

 (23.7) (17.7) (8.11) (23.5) (22.8) (16.5) (8.10) (23.1) 

Time use (hours on a typical day) 

doing domestic tasks     4.25 3.08 2.37 1.05 

     (3.14) (2.76) (1.43) (3.69) 

doing tasks on family 
farm etc. 

    3.71 -2.02 0.66 -0.35 

    (3.32) (2.20) (1.48) (2.44) 

doing paid work 
outside HH 

    3.83 -3.20 2.20 -0.17 

    (3.36) (1.90) (1.86) (1.66) 

at school     8.10** 3.15 5.30*** 4.32 

     (3.10) (1.99) (1.57) (2.87) 

studying outside of 
school time 

    10.5*** 4.72** 2.66** 0.65 

    (2.72) (1.88) (1.09) (2.12) 

general leisure etc.     5.62 -0.23 1.52 -1.42 

     (3.57) (1.61) (1.15) (2.15) 

caring for others     7.31* -9.60** 0.85 -2.64 

     (3.72) (4.11) (1.05) (3.80) 

Lagged math scores 
(2006) 

0.34*** 0.43*** 0.22*** 0.33*** 0.34*** 0.39*** 0.22*** 0.29*** 

(0.035) (0.047) (0.023) (0.035) (0.034) (0.040) (0.021) (0.035) 

Constant 226 274*** 444*** 442*** 120 211* 377*** 357** 

 (167) (91.8) (62.9) (130) (167) (103) (45.3) (131) 

Observations 964 970 656 964 963 969 656 925 

R-squared 0.441 0.532 0.494 0.432 0.457 0.574 0.525 0.451 

Robust standard errors in parentheses. Standard errors are clustered at site level. *** p<0.01, ** p<0.05, * p<0.1. Test scores are IRT scores normalised 
to have a mean of 500 and SD of 100 in the pooled four-country sample at each age. The dependent variable is the maximum likelihood IRT estimate as 
in all previous tables. Lagged achievement (at the age of 12) is the Bayesian EAP test score which is more robust to ceiling and floor effects. Coefficients 
should be compared to Table 11 which is the analogous specification but for using MLE scores as the lagged achievement measures. 
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Appendix 4 Correcting for measurement 
error in lagged achievement 

Table A4.1  Estimates correcting for measurement error: 8-years old 

VARIABLES (1) (2) (3) (4) (5) (6) (7) (8) 

Dep var: Mathematics score (2009) 

Without time use With time use 

Ethiopia India Peru Vietnam Ethiopia India Peru Vietnam 

Highest grade completed 40.9*** 27.4*** 33.6*** 60.9*** 28.4*** 25.4*** 32.6*** 55.2*** 

 (4.67) (2.03) (3.60) (14.6) (4.48) (1.62) (3.55) (10.9) 

Male 1.18 14.1*** 8.97*** 1.65 3.89 13.4*** 9.43*** 1.63 

 (4.84) (2.67) (2.33) (2.54) (3.91) (2.83) (2.46) (2.51) 

Eldest -1.57 2.36 7.19*** 3.57 -2.17 2.13 5.88** 4.89* 

 (3.75) (2.87) (2.35) (2.58) (3.99) (2.95) (2.48) (2.79) 

Caregiver's education level 2.55*** 1.73*** 1.58*** 2.57*** 1.98*** 1.47*** 1.51*** 2.17*** 

 (0.49) (0.50) (0.32) (0.57) (0.44) (0.46) (0.31) (0.64) 

Age in months 0.59 -0.073 -0.43 -0.79 0.55 0.010 -0.43 -0.31 

 (0.39) (0.32) (0.32) (1.10) (0.44) (0.31) (0.32) (0.86) 

Height-for-age (2009) 6.72*** 3.41* 3.05** 4.50*** 3.28* 3.59** 2.76** 3.24** 

 (2.06) (1.99) (1.45) (1.45) (1.93) (1.76) (1.36) (1.35) 

Wealth index (2006) 60.8*** 68.0*** 18.4*** 40.3*** 41.9*** 48.0*** 18.4*** 31.7** 

 (14.2) (16.9) (5.22) (14.8) (12.2) (14.6) (5.47) (13.5) 

Time use (hours on a typical day) 

doing domestic tasks     2.60 5.17 4.50*** -1.49 

     (2.61) (3.74) (1.43) (3.61) 

doing tasks on family farm etc.     0.69 -18.3*** 1.76 -12.0** 

     (2.83) (4.05) (2.31) (4.68) 

doing paid work outside HH     -6.12 17.1*** 3.25 5.11 

     (7.28) (6.33) (5.36) (11.2) 

at school     10.8*** 16.5*** 6.62*** 8.73** 

     (3.44) (2.82) (2.35) (4.42) 

studying outside of school time     12.7*** 11.5*** 6.07*** 8.85*** 

     (2.81) (2.53) (1.15) (2.29) 

general leisure etc.     1.01 2.01 1.02 1.61 

     (2.46) (1.44) (1.01) (1.67) 

caring for others     1.90 0.13 2.10** -1.92 

     (3.63) (4.18) (0.89) (3.16) 

Lagged CDA scores (2006) 0.15** 0.32*** 0.27*** 0.20*** 0.11* 0.27*** 0.26*** 0.15** 

 (0.069) (0.045) (0.027) (0.065) (0.057) (0.044) (0.030) (0.064) 

Constant 299*** 217*** 339*** 426*** 228*** 94.7** 281*** 345*** 

 (41.0) (33.5) (28.4) (83.0) (54.2) (42.1) (36.8) (65.2) 

Observations 1,821 1,821 1,848 1,708 1,820 1,821 1,842 1,662 

R-squared 0.409 0.343 0.323 0.486 0.466 0.413 0.346 0.507 

Kleibergen-Paap F-statistic 72.3 81.2 201 56.2 73.6 82.7 193 53.0 

Robust standard errors in parentheses. Standard errors are clustered at site level. *** p<0.01, ** p<0.05, * p<0.1. Test scores are IRT scores normalised 
to have a mean of 500 and SD of 100 in the pooled four-country sample. Lagged CDA scores are instrumented using scores on the adapted Peabody 
Picture Vocabulary test in 2006 to correct for measurement error. Coefficients should be compared to Table 10. 





Emergence and Evolution of Learning Gaps  
across Countries: Panel Evidence from Ethiopia, 
India, Peru and Vietnam

There are substantial learning gaps across countries on standardised 
international assessments. In this paper, I use unique child-level 
panel data from Ethiopia, India, Peru and Vietnam with identical 
tests administered across these countries to children at 5, 8, 12 
and 15 years of age to ask at what ages do gaps between different 
populations emerge, how they increase or decline over time, and what 
the proximate determinants of this divergence are. 

I document that a clear pattern of stochastic dominance is evident at 
the age of 5 years, prior to school enrolment, with children in Vietnam 
at the upper end, children in Ethiopia at the lower, and with Peru 
and India in between. Differences between country samples grow in 
magnitude at later ages, preserving the country rankings noted at 5 
years of age over the entire age range studied. This divergence is only 
partly explained by home investments and child-specific endowments 
in a value-added production function approach. The divergence in 
achievement between Vietnam and the other countries at primary 
school age is largely explained by the differential productivity of a year 
of schooling. These findings are confirmed also using an instrumental 
variables approach, using discontinuities in grade completion arising 
between children born in adjacent months due to country-specific 
enrolment guidelines. 

www.younglives.org.uk	

About Young Lives

Young Lives is an international study 
of childhood poverty, involving 12,000 
children in 4 countries over 15 years. 
It is led by a team in the Department 
of International Development at the 
University of Oxford in association 
with research and policy partners in 
the 4 study countries: Ethiopia, India, 
Peru and Vietnam. 

Through researching different aspects 
of children’s lives, we seek to improve 
policies and programmes for children.

Young Lives Partners

Young Lives is coordinated by a small team 
based at the University of Oxford, led by 
Professor Jo Boyden.

•	 �Ethiopian Development Research Institute, 
Ethiopia

•	 �Pankhurst Development Research and 
Consulting plc

•	 �Save the Children (Ethiopia programme)

•	 �Centre for Economic and Social Sciences, 
Andhra Pradesh, India

•	 �Save the Children India

•	 �Sri Padmavathi Mahila Visvavidyalayam 
(Women’s University), Andhra Pradesh, India

•	 �Grupo de Análisis para el Desarollo 
(GRADE), Peru

•	 �Instituto de Investigación Nutricional, Peru

•	 �Centre for Analysis and Forecasting, 
Vietnamese Academy of  Social Sciences, 
Vietnam

•	 �General Statistics Office, Vietnam

•	 �University of  Oxford, UK

Contact:
Young Lives
Oxford Department of  
International Development,
University of Oxford,
3 Mansfield Road,
Oxford OX1 3TB, UK
Tel: +44 (0)1865 281751
Email: younglives@younglives.org.uk
Website: www.younglives.org.uk
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